Способ определения минутного объема вентиляции легких при проведении интраоперационной искусственной вентиляции легких в абдоминальной хирургии

Изобретение относится к области медицины, а именно к анестезиологии и реаниматологии. Определяют рост (Р) и массу (В) тела больного, рассчитывают площадь поверхности тела по формуле S=0,0235·P0,42246·B0,51456. За 2 часа до премедикации определяют длительность произвольного порогового апноэ. При значении апноэ менее 30 секунд определяют соответствие поправочного коэффициента 0,7 л в мин на м2 площади поверхности тела. При значении произвольного порогового апноэ 31-60 секунд - определяют поправочный коэффициент - минус 0,3 л в мин на м2 площади поверхности тела. При значении произвольного порогового апноэ более 60 секунд определяют поправочный коэффициент - минус 0,55 л в мин на м2 площади поверхности тела. Затем определяют требуемый минутный объем вентиляции (MOB) по формуле: MOB=(m/10+1)+k×S, где m - масса пациента в кг, S - площадь поверхности тела в м2, k - поправочный коэффициент. Способ позволяет снизить количество осложнений, связанных с нарушением газообмена. 3 табл., 3 пр.

 

Предлагаемое изобретение относится к медицине, а именно к анестезиологии и реаниматологии, и может быть использовано при проведении искусственной вентиляции легких (ИВЛ) при длительных операциях на органах брюшной полости.

Основное требование к современной длительной ИВЛ - обеспечение адекватного легочного газообмена при минимуме побочных влияний - при минимальном отрицательном влиянии на систему внешнего дыхания, на сердечно-сосудистую систему, на гомеостаз. Традиционная объемная ИВЛ является общепризнанным и наиболее часто применяемым методом респираторной поддержки в течение анестезии (Кассиль В.Л. Выжигина М.А., Лескин Г.С. Искусственная и вспомогательная вентиляция легких. - М.: Медицина, 2004, Hans G.A., Sottiaux T.M., Lamy M.L. et al. Ventilatory management during routine general anaesthesia. Eur J Anaesthesiol. 2009 Jan; 26(1): 1-8. Review). При проведении данного вида ИВЛ является принципиальным выбор основных параметров - дыхательного объема (ДО), частоты дыхания (ЧД), уровня положительного давления в конце выдоха (ПДКВ), фракции вдыхаемого кислорода (FiO2). Кроме того, основополагающим считается уровень минутного объема вентиляции (MOB), определяющего, в основном, уровень собственно газообмена в легких (Magnusson L. Role of spontaneous and assisted ventilation during general anaesthesia. Best Pract. Res. Clin. Anaesthesiol. 2010 Jun; 24(2): 243-52. Review). Неадекватно подобранный MOB приводит к нарушению газообмена в легких, к гипер- или гиповентиляции и соответственно к гипо- или гиперкапнии. Неблагоприятными эффектами гиперкапнии являются дилатация сосудов мозга, респираторный ацидоз, стимуляция повышенного сердечного выброса и общего периферического сосудистого сопротивления (ОПСС), констрикция приносящих артериол почек, развитие олигурии, подергивания мышц, судороги (Эйткенхед А.Р. Руководство по анестезиологии / А.Р.Эйткенхед, Г.Смит // Перевод с анг. - М.: Медицина, 1999).

Гипокапния во время анестезии может приводить к следующим неблагоприятным последствиям (Эйткенхед А.Р. Руководство по анестезиологии / А.Р.Эйткенхед, Г.Смит // Перевод с анг. - М.: Медицина, 1999): констрикция сосудов мозга, респираторный алкалоз, отрицательный дромотропный эффект, жизнеугрожающие аритмии, нарушение деятельности коры и периферических нервов, тетания, судороги.

Таким образом, очевидной становится необходимость поддержания нормовентиляции с целью профилактики указанных расстройств гомеостаза.

Несмотря на очевидную важность и актуальность, на данный момент проблема выбора необходимого MOB при применении интраоперационной ИВЛ далека от решения. Одним из аналогов предлагаемого способа является способ определения минутного объема вентиляции по номограмме Рэдфорда. При использовании номограммы Рэдфорда (Radford E.P. Jr. Ventilation standards for use in artificial respiration. J Appl Physiol. 1955 Jan; 7(4): 451-60) необходимо учитывать вес пациента и заданную частоту дыхания. Значение дыхательного объема находят в точке пересечения прямой, соединяющей показатели веса (на шкале I) и частоты дыхания (на шкале III), со шкалой II. Определяя по номограмме необходимый дыхательный объем, вычисляют MOB, умножая выбранную ЧД на определяемый ДО.

Недостатки способа:

1. Высокий риск гиповентиляции и гиперкапнии.

2. Необходимость внесения большого количества поправок (Е.Р.Radford et al. Clinical use of a nomogram to estimate proper ventilation during artificial respiration. N. Engl. J. Med. 251: 877, 1984):

а) при повышенной температуре тела необходимый дыхательный объем увеличивают на 5% на каждые 0,5°С сверх 37°С;

б) при обычной активности увеличивают дыхательный объем на 10% по сравнению с таковым в условиях основного обмена;

в) в местностях выше уровня моря дыхательный объем увеличивают на 5% на каждые 600 м;

г) при применении медикаментов, обладающих катаболическим действием (например, атропин, этиловый эфир), увеличивают дыхательный объем в среднем на 20%.

Другим аналогом является способ определения MOB по номограмме Энгстрема-Герцога (Engstrom CG. Herzog P: Ventilation nomogram for practical use with the Engstrom respirator. Acta Chir Scand Suppl. 1959; Suppl 245: 37-42.). Определяя возраст и площадь поверхности тела пациента по номограмме, по этой же номограмме определяют MOB.

Недостатки способа:

1. Относительная сложность расчета

2. Большой процент ошибок при наличии сопутствующей патологии, что ведет к увеличению частоты нарушений кислотно-основного состояния, газового гомеостаза, увеличению числа осложнений.

Ближайшим аналогом способа определения минутного объема вентиляции является способ, предложенный Т.М.Дарбиняном. Способ заключается в расчете MOB по формуле MOB=m/10+1, где m - масса тела пациента. Предложенная формула в большинстве случаев позволяет достаточно точно определить требуемый уровень вентиляции (Кассиль В.Л. Искусственная и вспомогательная вентиляция легких / В.Л.Кассиль, М.А.Выжигина, Г.С.Лескин // M.: Медицина, 2004. - 480 С.).

Недостатком способа является то, что он не учитывает функциональное состояние дыхательной и сердечно-сосудистой систем, что нередко приводит к ошибкам в расчетах и значительной частоте гипервентиляции и гипокапнии.

ЗАДАЧА: уменьшение частоты гипервентиляции и гиповентиляции при проведении искусственной вентиляции легких путем повышения достоверности способа определения минутного объема вентиляции, основанного на определении индивидуального функционального состояния дыхательной и сердечно-сосудистой систем.

Технический результат - предлагаемый способ позволяет неинвазивно, в реальном масштабе времени оценивать функциональное состояние дыхательной системы и определять необходимый уровень минутной вентиляции легких, повысить экономическую эффективность лечения вследствие снижения количества осложнений, связанных с нарушением газообмена.

Сущностью предлагаемого способа определения минутного объема вентиляции легких при проведении интраоперационной искусственной вентиляции легких в абдоминальной хирургии является предоперационное определение массы тела и роста больного с расчетом площади поверхности тела по формуле S=0,0235·P0,42246·B0,51456, где Р - рост в см, В - вес в кг, при этом вечером накануне, за 2 часа до премедикации, у больного определяют длительность произвольного порогового апноэ и при ее значении менее 30 секунд - низкой толерантности к транзиторной гипоксии и гиперкапнии - определяют соответствие поправочного коэффициента 0,7 л в мин на м2 площади поверхности тела, при значении произвольного порогового апноэ 31-60 секунд - средней толерантности к транзиторной гипоксии и гиперкапнии - выявляют соответствие поправочного коэффициента минусу 0,3 л в мин на м2 площади поверхности тела, а при условии значения произвольного порогового апноэ более 60 секунд - высокой толерантности к транзиторной гипоксии и гиперкапнии - определяют соответствие поправочного коэффициента минусу 0,55 л в мин на м2 площади поверхности тела и затем определяют требуемый минутный объем вентиляции (MOB) по формуле

МОВ=(m/10+1)+k×S, где

m - масса пациента в кг,

S - площадь поверхности тела в м2,

k - поправочный коэффициент.

Способ апробирован в клинических условиях на 43 пациентах, у которых проводилась интраоперационная ИВЛ при проведении обширных абдоминальных операций. В предоперационном периоде осуществлялось определение толерантности к транзиторной гипоксии и гиперкапнии. В течение анестезии определяли напряжение углекислого газа в конце выдоха (PetCO2), напряжение углекислого газа в артериальной крови (paCO2). В зависимости от толерантности к транзиторной гипоксии и гиперкапнии все пациенты были разделены на 3 группы:

1. Пациенты с низкой толерантностью к транзиторной гипоксии и гиперкапнии.

2. Пациенты со средней толерантностью к транзиторной гипоксии и гиперкапнии.

3. Пациенты с высокой толерантностью к транзиторной гипоксии и гиперкапнии.

Во всех группах определяли необходимый MOB по формуле MOB=(m/10+1)+k×S, где k составил для первой группы 0,7 л/мин/м2, для второй -0,3 л/мин/м2 и для третьей -0,55 л/мин/м2.

Во всех исследуемых группах при проведении ИВЛ во время операции PetCO2 и раСО2 оставались в пределах нормальных значений и коррекции параметров ИВЛ не требовалось, что свидетельствует об адекватном подборе необходимой минутной вентиляции.

Способ осуществляют следующим образом. При поступлении пациента в стационар определяют массу и роста больного с расчетом площади поверхности тела по формуле S=0,0235·P0,42246·B0,51456, где Р - рост в см, В - вес в кг, затем вечером накануне операции до премедикации проводят пробу Штанге с определением толерантности к транзиторной гипоксии и гиперкапнии по длительности произвольного порогового апноэ, что отражает функциональное состояние дыхательной и сердечно-сосудистой систем. Затем по длительности произвольного порогового апноэ определяют значение поправочного коэффициента. Для пациентов с низкой толерантностью к транзиторной гипоксии и гиперкапнии составляет 0,7 л/мин/м2, для пациентов со средней толерантностью к транзиторной гипоксии и гиперкапнии минус 0,3 л/мин/м2 и для пациентов с высокой толерантностью к транзиторной гипоксии и гиперкапнии поправочный коэффициент составляет минус 0,55 л/мин/м2. Затем вычисляют необходимый MOB по формуле МОВ=(m/10+1)+k×S, где m - масса пациента в кг, S - площадь поверхности тела в м2, k - поправочный коэффициент.

КЛИНИЧЕСКИЕ ПРИМЕРЫ

1. БОЛЬНАЯ М., 54 г. Диагноз: рак желудка.

При поступлении произведены антропометрические исследования (вес - 80 кг, рост - 164 см), по данным которых выполнен расчет площади поверхности тела по формуле S=0,0235·P0,42246·B0,51456, где Р - рост в см, В - вес в кг. Параллельно методом проведения пробы Штанге определена толерантность к транзиторной гипоксии и гиперкапнии.

Длительность пробы Штанге 70 секунд.

По формуле определили необходимый уровень минутной вентиляции легких (MOB=(80/10+1)-0,55×1,9=7,9 л/мин.

После начала ИВЛ применяли следующие параметры:

ДО - 0,53 л,

ЧДД - 15 в минуту.

Показатель 1 час 2 час 3 час 4 час 5 час 6 час
РаСО2 36 37 36 36 37 37
РетСО2 32 32 33 34 34 34

2. БОЛЬНОЙ Т., 67 г. Диагноз: рак поджелудочной железы.

При поступлении произведены антропометрические исследования (вес - 75 кг, рост - 173 см), по данным которых выполнен расчет площади поверхности тела по формуле S=0,0235·1730,42246·680,51456=1,8 м2. Параллельно методом проведения пробы Штанге определена толерантность к транзиторной гипоксии и гиперкапнии.

Длительность пробы Штанге 45 секунд.

По формуле определили необходимый уровень минутной вентиляции легких (MOB=(68/10+1)-0,3×1,8=7,2 л/мин.

После начала ИВЛ применяли следующие параметры:

ДО - 0,55 л,

ЧДД - 13 в минуту.

Показатель 1 час 2 час 3 час 4 час 5 час 6 час 7 час
РаСО2 33 36 35 37 40 39 36
РетСО2 31 33 32 32 35 36 32

3. БОЛЬНОЙ Р., 45 г. Диагноз: рак прямой кишки.

При поступлении произведены антропометрические исследования (вес - 94 кг, рост - 181 см), по данным которых выполнен расчет площади поверхности тела по формуле S=0,0235·1810,42246·940,51456=2,2 м2. Параллельно методом проведения пробы Штанге определена толерантность к транзиторной гипоксии и гиперкапнии.

Длительность пробы Штанге 24 секунд.

По формуле определили необходимый уровень минутной вентиляции легких (MOB=(94/10+1)+0.7×2.2-11,9 л/мин.

После начала ИВЛ применяли следующие параметры:

ДО - 0,67 л,

ЧДД - 18 в минуту.

Показатель 1 час 2 час 3 час 4 час 5 час 6 час 7 час
PaCO2 38 35 34 35 36 36 36
РетСО2 35 32 31 32 32 33 31

Вывод: таким образом, применение предложенного способа позволило избежать нарушений газообмена при проведении интраоперационной ИВЛ.

Способ определения минутного объема вентиляции легких при проведении интраоперационной искусственной вентиляции легких в абдоминальной хирургии, включающий определение роста и массы тела больного с расчетом площади поверхности тела по формуле S=0,0235·P0,42246·B0,51456, где Р - рост в см, В - вес в кг, отличающийся тем, что вечером накануне операции, за 2 ч до премедикации, у больного определяют длительность произвольного порогового апноэ, и при ее значении менее 30 с - низкой толерантности к транзиторной гипоксии и гиперкапнии - определяют соответствие поправочного коэффициента 0,7 л в мин на м2 площади поверхности тела, при значении произвольного порогового апноэ 31-60 с - средней толерантности к транзиторной гипоксии и гиперкапнии - выявляют соответствие поправочного коэффициента минусу 0,3 л в мин на м2 площади поверхности тела, а при условии значения произвольного порогового апноэ более 60 с - высокой толерантности к транзиторной гипоксии и гиперкапнии - определяют соответствие поправочного коэффициента минусу 0,55 л в мин на м2 площади поверхности тела, и затем определяют требуемый минутный объем вентиляции (MOB) по формуле
MOB=(m/10+1)+k·S, где
m - масса пациента в кг,
S - площадь поверхности тела в м2,
k - поправочный коэффициент.



 

Похожие патенты:
Изобретение относится к области медицины, а именно к пульмонологии. .
Изобретение относится к медицине, а именно к пульмонологии. .

Изобретение относится к медицине, а именно - к аллергологии, пульмонологии, и может быть использовано для контроля за лечением бронхиальной астмы у детей. .
Изобретение относится к области медицины, к пульмонологии, и может быть использовано для прогнозирования нестабильного течения бронхиальной астмы. .

Изобретение относится к медицине, а именно к приборам и инструментам для измерения объемного расхода воздуха при дыхании человека. .
Изобретение относится к медицине, к средствам психоэмоциональной саморегуляции человека. .

Изобретение относится к медицине, а именно к оториноларингологии. .
Изобретение относится к медицине, к пульмонологии и может быть использовано для прогнозирования прогрессирования обструкции дыхательных путей. .

Изобретение относится к области медицины, а именно к хирургии и реаниматологии. .
Изобретение относится к медицине, а именно к пульмонологии, терапии и аллергологии, и может быть использовано для прогнозирования риска развития неконтролируемого течения тяжелой бронхиальной астмы (БА)

Изобретение относится к медицине, а именно к пульмонологии, и может быть использовано для прогнозирования течения среднетяжелой хронической обструктивной болезни легких (ХОБЛ)
Изобретение относится к медицины, а именно к пульмонологии, и может быть использовано для прогнозирования риска формирования холодовой гиперреактивности дыхательных путей (ХГДП) среди больных с бронхиальной астмой
Изобретение относится к медицине, а именно к пульмонологии и аллергологии, и может быть использовано для лечения бронхиальной астмы (БА) у детей и подростков. Для этого определяют клинические, функциональные, цитологические, биохимические, иммунологический маркеры активности аллергического воспаления (МААВ). Далее эти маркеры оценивают по разработанным шкалам. Подсчитывают сумму баллов по каждой шкале отдельно. Затем рассчитывают индексы активности аллергического воспаления (ИААВ) по определенным математическим формулам с учетом подсчитанной суммы баллов по каждой шкале. Вычисляют интегративный ИААВ. Затем определяют степень активности аллергического воспаления (СААВ) в зависимости от величины интегративного ИААВ. При 0-й СААВ проводят лечение, соответствующее I-й ступени базисной противовоспалительной терапии БА. При I-й СААВ проводят лечение, соответствующее II-й ступени базисной терапии. При II-й СААВ проводят лечение, соответствующее III-й ступени терапии, при III-й СААВ проводят лечение, соответствующее IV-й ступени базисной противовоспалительной терапии БА. Способ обеспечивает дифференцированный подход к выбору объема базисной терапии данного заболевания за счет точного диагностирования степени активности аллергического воспалительного процесса в стенке дыхательных путей, что, в свою очередь, приводит к сокращению частоты приступов и продолжительности обострений при увеличении ремиссии БА. 2 пр., 10 табл.
Изобретение относится к медицине, а именно к пульмонологии, бальнеотерапии, мануальной терапии. Способ включает предварительное определение с помощью велоэргометрии толерантности к физической нагрузке по тесту PWC170, минутной вентиляции легких (МВЛ) с помощью пневмотахографии и насыщения артериальной крови кислородом с помощью ушного датчика оксигемографа. При этом при снижении толерантности к физической нагрузке при мощности менее 1 Вт/кг в течение 2 минут, повышении MBЛ более 350% от исходных величин, с возрастанием насышения артериальной крови кислородом более 98% сначала проводят мануальную терапию на позвоночно-двигательные сегменты в количестве 3 процедур через два дня. После чего осуществляют бальнеотерапию в виде проведения термальных слаборадоновых кремнистых ванн при температуре 38°C, длительностью 10 минут, в количестве 6 процедур на курс. Способ снижает вероятность возникновения хронического процесса в бронхах, уменьшает частоту возникновения рецидива бронхита за счет нормализации функции внешнего дыхания путем ликвидации функциональных блоков в позвоночно-двигательном сегменте.
Изобретение относится к медицине, а именно к хирургии и эндокринологии, и может быть использовано при необходимости проведения оперативного вмешательства у пациентов с заболеваниями щитовидной железы, осложненных компрессией трахеи. Для этого посредством спирографии определяют объем форсированного выдоха за 1 секунду. При величине полученного объема от 35% до 54% выполняют срочную операцию. При величине объема форсированного выдоха за 1 секунду менее 35% выполняют неотложную операцию. Способ позволяет с наибольшей точностью установить сроки проведения оперативного вмешательства у больных, нуждающихся в неотложной операции, что в свою очередь обеспечит возможность более полной дооперационной подготовки и улучшение результатов хирургического лечения. 1 табл., 2 пр.
Изобретение относится к медицине, а именно к педиатрии. Определяют: величину пиковой скорости выдоха (ПСВ), л/мин, и должное значение пиковой скорости выдоха (ПСВД), л/мин; возраст ребенка (В) - количество полных лет, рост (Р) в см, массу тела (М) в кг с точностью до 0,1 кг; устанавливают коэффициенты: половой принадлежности (Π) - 1 для мужского пола, 0 - для лиц женского пола; тяжесть течения заболевания (ТЗ) - 1 легкое течение БА, 2 среднетяжелое течение БА, 3 тяжелое течение БА; получение базисной терапии (БТ) - 1 ребенок получал терапию в течение года, предшествующего обследованию, 0 не получал; степень тяжести приступа БА (ТП) - 1 легкая степень приступа, 2 среднетяжелая степень, 3 тяжелая степень. Рассчитывают коэффициент пиковой скорости выдоха (КПСВ) как отношение (ПСВ/ПСВД)×100%. Выполняют кардиоинтервалографию и определяют значение коэффициента вагосимпатического баланса (LF/HF). Рассчитывают значение коэффициента эффективности препарата «Беродуал» для купирования приступа бронхиальной астмы у ребенка (К) по математической формуле и при величине К>12 купирование приступа БА препаратом «Беродуал» оценивают как эффективное. Способ позволяет повысить достоверность оценки применения препарата Беродуал для купирования приступа бронхиальной астмы у ребенка, что достигается за счет совокупной оценки клинических и функциональных признаков его состояния. 3 пр.
Наверх