Способ кулонометрического определения содержания воды в таблеточной массе


 


Владельцы патента RU 2488819:

государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский медицинский университет" Министерства здравоохранения Российской Федерации (RU)

Изобретение относится к области медицины и описывает способ определения содержания воды в таблеточной массе при промышленном производстве таблеток путем кулонометрического титрования, где в основе лежит взаимодействие воды, содержащейся в исследуемом образце, с кулонометрическим титрантом - электрогенерированным йодом, который образуется при электролизе органического или неорганического йодида (например, СН3I или KI), входящего в состав фонового электролита при постоянной силе тока 50 мА в течение времени, определяемого биопотенциометрически по достижению конечной точки титрования, содержание воды (X, г) в аликвоте исследуемого образца рассчитывается по формуле, и параллельно проводят определение воды в растворителе и по известным формулам рассчитывают содержание воды в таблеточной массе. Представленный способ отличается экспрессностью, простотой проведения эксперимента, чувствительностью и точностью. 2 табл., 1 ил., 1 пр.

 

Изобретение относится к области фармации. Оно может быть использовано для определения содержания воды в таблеточной массе при промышленном производстве таблеток.

Известны способы определения содержания воды, основанные на: 1 - высушивании таблеточной массы в определенных условиях; 2 - волюмометрическом титровании реактивом Фишера; 3 - дистилляции (С.А. Носовицкая, Е.Е. Борзунов, P.M. Сафиулин Производство таблеток. Пособие для работников таблеточных цехов химико-фармацевтических заводов и галеново-фармацевтических лабораторий. Медицина, Москва, с.78-81; Государственная Фармакопея, 11-е изд.. Вып.1, Медицина, Москва (1987), С.176-179). Недостатком метода высушивания является неспецифичность методики, т.к. наряду с водой определяются и летучие вещества, что может привести к завышенным результатам, длительность и трудоемкость. Недостатком методики волюмометрического титрования реактивом Фишера является необходимость предварительной стандартизации титранта, длительность и трудоемкость. Недостатком метода дистилляции являются невысокая точность, длительность и трудоемкость.

Задачей заявленного изобретения является разработка простого, экспрессного и достоверного способа определения воды в таблеточной массе.

Поставленная задача достигается при кулонометрическом титровании образца электрогенерированным йодом, который образуется при электролизе органического или нерганического йодида (например, CH3I или KI), входящего в состав неводного фонового электролита, на платиновом электроде при постоянной силе тока 50 мА и легко взаимодействует с водой, содержащейся в анализируемом образце, по реакции Фишера. Содержание воды (X, г) в аликвоте исследуемого образца рассчитывается по формуле:

Х=I×t×M/F,

где I - сила тока, 0,05 A; t - время достижения конечной точки титрования, с; М - молярная масса эквивалента воды, 9,008 г/моль; F - постоянная Фарадея 96485 Кл/моль.

Пример. Определение содержания воды в таблеточной массе рамиприла

Навеску таблеточной массы растворяют в смеси пиридин, содержащий диоксид серы (IV) и метанол в соотношении 1:1. При этом большая часть таблеточной массы растворяется, нерастворимый остаток взбалтывается и выдерживается 30-40 минут для полного извлечения воды, о чем свидетельствует рис.1.

Электрогенерацию йода проводят из коммерчески доступного фонового электролита, состоящего из КФИ-Анода (ТУ 2638-001-33699038-004-02) в анодной камере и КФИ-Катода (ТУ 2638-001-33699038-008-02) в катодной камере на платиновом электроде при постоянной силе тока 50 мА - изначально заданная величина.

В кулонометрическую ячейку содержащую фоновый электролит, помещают рабочий (платиновый), вспомогательный (платиновый), соединенные с гальваностатом, поддерживающим постоянный ток в цепи 50 мА (генераторная цепь) и индикаторные электроды (игольчатые платиновые), соединенные с потенциометром (индикаторная цепь). Включают индикаторную цепь, при этом потенциометр показывает определенное напряжение в цепи (например, 360 мВ). Включают генераторную цепь для удаления влаги из фонового электролита. При этом генерируется йод, появляется обратимая пара I2|2I- и напряжение в индикаторной цепи уменьшается. При достижении определенного значения напряжения в индикаторной цепи (например, 40 мВ) выключают генераторную цепь. Далее в ячейку вносят аликвоту раствора таблеточной массы рамиприла объемом 1 мл, при этом значение напряжения в индикаторной цепи увеличивается. Далее включают генераторную цепь и одновременно включают секундомер. При достижении значения напряжения в индикаторной цепи 40 мВ выключают секундомер и генераторную цепь. Снимают показания секундомера - время достижения конечной точки титрования. Содержание воды в аликвоте раствора таблеточной массы рамиприла (X, г) рассчитывают по формуле:

Х=I×t×M/F,

где I - сила тока, 0,05 A; t - время достижения конечной точки титрования, с; М - молярная масса эквивалента воды, 9,008 г/моль; F - постоянная Фарадея 96485 Кл/моль. Параллельно проводят определение воды в растворителе. Далее по известным формулам рассчитывают содержание воды в таблеточной массе рамиприла. Определение проводят при комнатной температуре. Правильность определения воды проверяется по стандартному раствору HYDRANAL® - Check Solution 1.00 с содержанием воды (1,00±0,03) мг Н2О/г («Riedel-de Haen», Германия) в 1 мл, при этом в ячейку вносится 1 мл стандартного раствора.

Определение воды в растворе таблеточной массы рамиприла в смеси пиридин + SO2:метанол (1:1) проводили на трех уровнях концентрации в диапазоне 70-130% от среднего уровня и на среднем уровне концентрации (табл.1, 2). Относительное стандартное отклонение не превышает 0,02. Содержание таблеточной массы рамиприла в растворе на среднем уровне концентрации подбирали таким образом, чтобы в аликвоте объемом 1 мл содержалось 1 мг воды.

Преимущества данного способа: специфичность, т.к. в основе определения лежит реакция Фишера, по которой титруется только вода; отсутствие необходимости предварительной стандартизации титранта, построения кривых титрования и расчета точки эквивалентности, что сокращает время анализа и обеспечивает оперативность принятия решения о возможности таблетирования гигроскопичных таблеточных масс; предварительное удаление воды из фонового электролита повышает точность анализа, т.к. титруется только вода вносимой аликвоты; экспрессность и простота проведения эксперимента.

Таблица 1
Кулонометрическое определение воды на трех уровнях концентрации в диапазоне 70-130% от уровня, принятого за 100% (n=5, P=95%)
Исследуемый образец Содержание таблеточной массы в аликвоте, % Найдено воды, % Sr
2,20 4,50±0,10 0,019
Рамиприл, 3,17 4,34+0,08 0,015
таблеточная масса 4,15 4,45±0,09 0,017
Таблица 2
Метрологические характеристики методики кулонометрического определения воды на уровне, принятом за 100% (n=5, Р=95%)
Исследуемый образец Содержание таблеточной массы в аликвоте, % Найдено воды, % Метрологические характеристики
3,06 4,48 Xcp=4,42
2,93 4,43 ΔХср=0,07
Рамиприл, таблеточная масса 2,98 4,39 Sx=0,05805
3,10 4,47 Sr=0,013
3,17 4,34 εcp=1,63%

Способ определения содержания воды в таблеточной массе при промышленном производстве таблеток путем кулонометрического титрования, отличающийся тем, что в основе лежит взаимодействие воды, содержащейся в исследуемом образце, с кулонометрическим титрантом - электрогенерированным йодом, который образуется при электролизе органического или неорганического иодида (например СН3I или KI), входящего в состав фонового электролита при постоянной силе тока 50 мА в течение времени, определяемого биопотенциометрически по достижению конечной точки титрования, содержание воды (X, г) в аликвоте исследуемого образца рассчитывается по формуле:
X=I·t·M/F,
где I - сила тока, 0,05 A; t - время достижения конечной точки титрования, с; М - молярная масса эквивалента воды, 9,008 г/моль; F - постоянная Фарадея 96485 Кл/моль, параллельно проводят определение воды в растворителе и по известным формулам рассчитывают содержание воды в таблеточной массе.



 

Похожие патенты:
Изобретение относится к медицине, в частности к фармакогнозии и фармации, конкретно к способу определения содержания кальция в жидких экстрактах из растительного сырья.

Изобретение относится к фармацевтическому анализу и может быть использовано для фотоэлектроколориметрического определения сульфаниламидных препаратов - стрептоцида, сульфадимезина, этазола, сульфалена, фталазола, сульфатиазола, сульфадиметоксина, сульфамонометоксина в центральных заводских лабораториях, в контрольно-аналитических лабораториях, в биохимических лабораториях клиник и судебно-химических лабораториях.

Изобретение относится к аналитической химии, к области фармации и может быть использовано для количественного определения аскорбиновой кислоты в лекарственных препаратах.

Изобретение относится к аналитической химии, а именно к способам обнаружения биологически активного соединения - лизина, в сложных смесях. .

Изобретение относится к медицине, а именно к фармацевтическому анализу лекарственного растительного сырья, и описывает способ количественного определения полисахаридов в траве видов рода фиалка, включающий измельчение сырья, водную экстракцию полисахаридного комплекса при нагревании, внесение реагента, фильтрацию и определение содержания полисахаридов по формуле, отличающийся тем, что в качестве растительного сырья используют траву фиалки одноцветковой, водную экстракцию проводят в течение 1 часа при соотношении сырье:экстрагент, как 1:50, экстракт фильтруют и к фильтрату, в соотношении 1:1, добавляют 8%-ную хлористоводородную кислоту, выдерживают в течение 2-х часов на кипящей водяной бане, после чего охлаждают и нейтрализуют до pH=6,5-7,0, затем добавляют 1%-ный раствор пикриновой кислоты и 20%-ный раствор карбоната натрия, взятые в соотношении 1:3, полученную смесь выдерживают на водяной бане в течение 30 минут, после чего фильтруют и фильтрат спектрофотометрируют в кювете с толщиной поглощающего слоя 1 см при длине волны =460±2 нм, а определение количественного содержания полисахаридов проводят в пересчете на глюкозу по формуле.

Изобретение относится к химическим способам анализа, в частности к определению производных нитрофурана, пиразола, изоникотиновой кислоты, тиоаминокислот в лекарственных формах.

Изобретение относится к медицине и описывает способ определения содержания озона в озонированной перфторуглеродной эмульсии путем фотометрического измерения количества йода, выделяющегося в результате воздействия озона озонированной эмульсии на раствор йодистого калия с крахмалом, где перед проведением определения предварительно готовят реакционный раствор, содержащий йодистый калий и крахмал, из которого приготовляются подготовительный анализируемый и подготовительные калибровочные растворы, содержащие одинаковое количество йодистого калия и крахмала; к подготовительному анализируемому раствору приливается определенный объем озонированного перфторана, а к подготовительным калибровочным растворам последовательно добавляются такой же объем неозонированного перфторана и титрованный раствор йода в йодистом калии в количестве, необходимом для построения калибровочного графика; приготовленные растворы оставляют стоять в защищенном от света месте при температуре 20°С; растворы фотометрируют на фотоколориметре или спектрофотометре на длине волны 610 нм, следя за ходом изменения оптической плотности во времени до момента совпадения хода кривых калибровочных и исследуемого растворов; строят калибровочный график и вычисляют содержание озона в анализируемой эмульсии.
Изобретение относится к хроматографическому анализу различных химических соединений и может быть использовано в медицине, биологии, экологии и, в особенности, при допинговом контроле.

Изобретение относится к медицине и описывает способ получения тест-объекта для оценки цитотоксичности лекарственных средств, включающий использование роговицы эмбриональных цыплят и клеточной технологии, причем выделяют роговицу эмбрионов цыплят 7-14 дней гестации, которую измельчают и замораживают в парах жидкого азота до -180°С, при оценке цитотоксичности лекарственных средств замороженный материал подвергают медленной разморозке, переносят в центрифужную пробирку и трехкратно отмывают в растворе NaCl 0,9%, а затем измельчают клеточные элементы до получения гомогенной клеточной суспензии, осаждают строму в центрифуге, надосадок, содержащий клетки роговицы, переносят в стерильную пробирку и вновь осаждают клетки, супернатант удаляют, а к осадку, содержащему роговичные клетки, добавляют 1 мл раствора NaCl 0,9% и ресуспендируют, в полученной суспензии считают цитоз и определяют жизнеспособность клеток по окрашиванию их ДНК-флуорохромами на проточном цитофлюориметре, затем раствором NaCl 0,9% суспензию клеток роговицы доводят до концентрации 5,0·105 клеток в 1 мл и переносят в культуральные флаконы и добавляют исследуемые препараты, для контроля в один из флаконов добавляют NaCl 0,9%, дальнейшую инкубацию проводят в культуральных флаконах в СO2 инкубаторе в течение суток, далее суспензии клеток переносят в центрифужные пробирки, центрифугируют для осаждения клеток и отбирают по 1 мл суспензии каждого опыта для исследования цитотоксичности по окрашиванию клеток ДНК-флуорохромами, цитотоксичность исследуемых веществ оценивают на проточном цитофлюориметре.
Изобретение относится к области аналитической химии и биохимической клинической лабораторной диагностики и может быть использовано для определения содержания аскорбиновой кислоты в растворах, растительном и животном материале

Изобретение относится к аналитической химии и фармацевтике и может быть использовано для извлечения пуриновых алкалоидов из водных сред с целью их последующего определения

Изобретение относится к фармацевтическому анализу и может быть использовано для количественного определения лекарственных веществ - производных бигуанидов: глибутида, метформина, прогуанила ГХ, пиклоксидина и хлоргексидина в субстанциях в центральных заводских лабораториях, в контрольно-аналитических лабораториях, в биохимических лабораториях клиник и судебно-химических лабораториях

Изобретение относится к области биологии, медицины, ветеринарии и может быть использовано для проведения исследования биологической активности веществ в биологии, медицине и ветеринарии

Настоящее изобретение относится к биологии и медицине и описывает способ отбора анальгетических средств, который позволяет осуществлять поиск биологически активных веществ с анальгетическим действием в рядах NH-замещенных антраниловых кислот (1), ариламидов NH-замещенных антраниловых кислот (2), ариламидов N-ацил-N-алкенил(алкил)антраниловых кислот (3), амидов и гидразидов NH-ацил(галоген)антраниловых кислот (4), имеющих общий фрагмент: карбонил, фенильный радикал и вторичная или третичная аминогруппы, у которых определяют параметры электронной структуры молекул соединений и выбирают дескрипторы: энергия Хартри-Фока (ЕHF), полная тепловая энергия (EТЕРМ), заряды на атомах азота (qN), углерода (qC) и кислорода (qO), затем с помощью трехпараметровых уравнений рассчитывают анальгетическую активность (ААрасч.) и отбирают соединения, у которых теоретически рассчитанная АА равна или превосходит таковую препарата сравнения, выбранные соединения синтезируют и подтверждают расчетные данные экспериментально на лабораторных животных (ААэксп.). Способ экономически выгоден, так как позволяет проводить экспериментальные скрининговые исследования на животных не на всем объеме синтезированных веществ, а только тех, АА которых равна или превосходит аналог по действию. 9 табл., 3 пр.

Группа изобретений относится к соединениям - модификаторам хемосенсорных рецепторов и их лигандов, имеющим структурную формулу (IIIb), их подвидам и конкретным соединениям, съедобным композициям, содержащим модификаторы хемосенсорных рецепторов и их лигандов, имеющие структурную формулу (IIIb), их подвиды и конкретные соединения, а также к способам применения вышеуказанных соединений для улучшения сладкого вкуса съедобных композиций. Соединения данной группы изобретений обеспечивают возможность получения и улучшения сладкого вкуса. 6 н. и 18 з.п. ф-лы, 19 ил., 44 табл., 813 пр.

Изобретение относится к области биохимии, в частности к способу специфического отбора высокоаффинных молекул ДНК (ДНК-аптамеров) к рекомбинантному белку-мишени. Указанный способ включает синтез единой полипептидной цепи рекомбинантного белка, содержащего в своем составе фрагмент глютатион-S-трансферазы, целевой белок-мишень, пептидную последовательность, расщепляемую летальным фактором B. anthracis, и пептид, биотинилирующийся in vivo под действием фермента биотин-лигазы E.coli, связывание полученного рекомбинантного полипептида с библиотекой олигонуклеотидов и иммобилизацию белка на парамагнитных частицах, несущих глютатион, промывку парамагнитных частиц с иммобилизованным полипептидом от несвязавшихся олигонуклеотидов в потоке жидкости, отщепление белка-мишени со связанными ДНК-аптамерами с поверхности парамагнитных частиц летальным фактором B. anthracis, выделение и амплификацию аффинной к рекомбинантному белку-мишени последовательности ДНК в полимеразной цепной реакции и получение набора одноцепочечных ДНК-аптамеров, специфичных к белку-мишени. Изобретение позволяет эффективно получать высокоаффинные специфичные ДНК-аптамеры к рекомбинантным белкам-мишеням. 4 ил., 4 пр.

Изобретение относится к области фармакологии и касается способов оценки их противовоспалительной активности. Способ оценки противовоспалительной активности препарата включает введение исследуемого препарата экспериментальному животному, последующую индукцию воспаления каррагенином и исследование крови экспериментального животного спустя 3 часа после индукции воспаления. После чего оценивают лейкограмму крови и определяют соотношение суммы агранулоцитов к сумме гранулоцитов I и при I>0,93 судят о наличии противовоспалительной активности, а при I≤0,93 - о ее отсутствии. Предлагаемый способ является простым, достаточно точным и информативным, и может быть использован как в экспериментальной медицине для проверки противовоспалительных свойств препарата, так и в клинических условиях для контроля проводимой терапии воспалительных процессов. 2 пр., 1 табл.

Изобретение относится к химической и фармацевтической промышленности и может быть использовано для извлечения новокаина из водных сред с целью его дальнейшего определения. Способ экстракции новокаина из водных сред смесью фенетола и этилацетата, характеризуется тем, что готовят водно-солевой раствор новокаина, для чего водный раствор новокаина с известной концентрацией помещают в мерную колбу, доводят до метки насыщенным раствором высаливателя, в качестве которого используют сульфат аммония, экстрагируют новокаин смесью фенетола и этилацетата, взятых в соотношении 1:1, для этого к полученному водно-солевому раствору новокаина добавляют в качестве экстрагента смесь фенетола и этилацетата (1:1) при соотношении объемов фаз водно-солевого раствора новокаина и экстрагента 5:1, экстрагируют на вибросмесителе до установления межфазного равновесия, после расслаивания системы водно-солевой раствор отделяют от органической фазы и анализируют методом УФ-спектрофотометрии, измеряют оптическую плотность водно-солевого раствора на УФ-спектрофотометре при длине волны 291 нм и по градуировочному графику, построенному в координатах оптическая плотность водно-солевого раствора - концентрация новокаина, находят содержание новокаина в водной среде; зная концентрацию, рассчитывают коэффициент распределения и степень извлечения новокаина. Способ позволяет полностью извлечь новокаин из водных сред, интенсифицировать процесс извлечения, обеспечить экспрессность и надежность значений определения концентрации новокаина. 1 табл.

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств. Готовят растворы определяемого вещества (бендазола) и образца сравнения. В качестве растворителя для приготовления испытуемых растворов используют 0,1М раствор хлористоводородной кислоты. В качестве образца сравнения используют кислоту бензойную или фенолфталеин. Измеряют оптическую плотность раствора определяемого вещества (бендазола) и образца сравнения на спектрофотометре при аналитической длине волны 270 нм. Расчет результатов проводят по формуле, вводя в нее коэффициент пересчета 0,181 при определении по кислоте бензойной и 0,293 при определении по фенолфталеину. Способ позволяет повысить воспроизводимость результатов определения, уменьшить стоимость, трудоемкость, погрешность анализа, унифицировать методику анализа. 4 пр.
Наверх