Индивидуализированная система обучения как способ формирования профессиональной компетентности врачей-педиатров

Изобретение относится к медицине. При осуществлении способа перед обучением проводят интерактивное компьютерное тестирование. Оценку осуществляют по балльно-рейтинговой шкале исходных профессиональных знаний, скорости переработки информации, продуктивности и выносливости. Распределяют по трем уровням обучения и выбирают для каждого обучаемого очное или очное и дистанционное обучение. Процесс обучения проводят в соответствии с результатами предварительного тестирования с использованием дополнительных интерактивных компьютерных обучающих материалов с аудио- и видеоизображением диагностических, лечебных алгоритмов и процедур. В конце очного этапа проводят итоговое интерактивное компьютерное тестирование с предъявлением графических изображений с активными областями, аудио- и видеозаписей, моделирующих симптомы или клинические случаи, и выявляют неусвоенный врачом-педиатром объем знаний. Предъявляют обучающемуся врачу-педиатру таблицы Анфимова и определяют скорость восприятия зрительной информации. После чего составляют для обучающегося необходимый объем тематического материала. Далее осуществляют дистанционное обучение и распределение по трем уровням дистанционного обучения для каждого обучаемого в зависимости от его балльно-рейтинговой оценки. Изобретение позволяет повысить эффективность обучения врача-педиатра профессиональным знаниям и навыкам за счет индивидуализированной системы обучения. 2 з.п. ф-лы, 5 ил., 4 табл., 1 пр.

 

Область техники, к которой относится изобретение

Изобретение относится к способу формирования профессиональной компетентности врача-педиатра при использовании созданной индивидуализированной системы обучения для профессиональной подготовки специалистов в области медицины и, в частности, врачей-педиатров. В целях оказания высококвалифицированной помощи детям требуется непрерывное обучение врачей-педиатров путем формирования и непрерывного поддержания на высоком уровне их профессиональных знаний и навыков, используя приемы и средства, которые могут гарантировать высокую профессиональную подготовку конкретного врача, проводимую по индивидуальной программе в зависимости от уже имеющихся у него профессиональных компетенции и индивидуальной способности восприятия объема зрительной информации, показателей скорости переработки информации, показателя средней продуктивности и коэффициента выносливости каждого обучающегося, с последующим индивидуальным подбором режима обучения. До настоящего времени отсутствовала целостная система повышения квалификации врачей-педиатров, которая вмещала бы в себя все возможные современные технические средства.

Уровень техники

Известна система профессиональной подготовки врачей в области неонатологии с помощью учебно-практического комплекса с использованием манекенов-тренажеров и системы телемедицины (RU 103958 G09B 23/28, опублик. 19.05.2010). Данный учебный комплекс прежде всего позволяет овладеть практическими навыками за счет освоения алгоритма действия каждой манипуляции на основе использования учебных тренажеров и муляжей. Данная система действует через web-интерфейс, использует дистанционное получение информации. Отсутствие цикличного процесса обучения и отсутствие индивидуального подхода для каждого врача, исходя из его прежних достижений в обучении, являются основными недостатками данного способа обучения.

Широкое распространение получили способы профессиональной подготовки врачей с использованием телемедицинских технологий (RU №2395123, G09B 5/06, опублик. 17.03.2008). Указанный патент раскрывает способ, в соответствии с которым осуществляют передачу слушателям учебного материала в визуальной и фиксированной на электронных носителях форме. Врачам предоставляют возможность выполнить электронную обработку фрагментов лекционного материала, обеспечивают передачу слушателям указанных фрагментов на трех информационно-концептуальных уровнях: лектор (первый уровень), консультанты (второй уровень) и слушатели (третий уровень); проводят коллективное обсуждение особенностей актуальных и значимых вариантов изучаемых и анализируемых клинических случаев и зафиксированных патологических проявлений. Данный способ обучения имеет следующие недостатки: отсутствует учет индивидуальных характеристик успеваемости конкретного врача в процессе обучения. Изолированное использование данных технологий не предполагает мануального обучения и поддержания практических навыков врачом. Необходимость синхронизировать работу многих участников курса в данной модели обучения (лектор, консультант, слушатель) не позволяет создать непрерывную индивидуализированную среду обучения врача.

Известен также способ формирования интерактивной полиэкранной обучающей среды, описанный в заявке на изобретение №2011124061/08, опублик. 14.06.2011. Данный способ реализуют одновременно в очном и дистанционно удаленном классах. Видеоизображение обучаемых и обучаемого очного класса в режиме он-лайн представляют на одном из дальних экранов заочного класса и обратно, все обучаемые и обучающий очного класса интерактивно взаимодействуют в процессе обучения с обучаемыми заочного класса, обсуждают решения заданий, обучаемые получают он-лайн консультации от обучающего, благодаря чему повышают интерактивность взаимодействия между субъектами обучения. Обучаемые по необходимости повторяют цикл обучения самостоятельно и в другое время без обучающего, при этом посредством блока контроля в соответствии со специально сформированным программным обеспечением автоматизированно подбирают индивидуальные задания и формируют индивидуальные тесты. Изолированное использование данных технологий не предполагает мануального обучения и поддержания практических навыков врачом. К недостаткам аналога можно отнести низкую эффективность обучения, в частности, в способе не предусмотрена возможность циклического сочетания в обучающей системе практической и теоретической подготовки.

Наиболее близкой к заявленному техническому решению является система, основанная на программе дистанционного образования по антимикробной терапии, реализованная на базе портала «Антибиотики и антимикробная терапия» (www.antibiotic.ru), и представляет собой информационно-обучающую систему, имеющую в своем составе следующие основные компоненты: вопросы, тесты, задачи с ответами для тренинга, практические задания для самостоятельной работы, итоговое тестирование и взаимосвязь с другими областями знаний по специальности. Обучение проходит с помощью сетевых технологий - удаленного доступа к материалам курса через Интернет и общения с преподавателем посредством электронной почты. В течение всего цикла обучения за каждым слушателем закреплен индивидуальный преподаватель. Преподаватель контролирует выполнение слушателем контрольных заданий и проводит консультации со слушателем. Экзамены проводятся в очной форме с выездом экзаменационной комиссии в заранее установленное место в зависимости от территориальных характеристик набранной группы. Использование в прототипе только дистанционных технологий имеет узкую направленность обучения и не предполагает этапа очного мануального обучения и поддержания практических навыков врачом. В прототипе нет четкой системы расчета индивидуальной успеваемости конкретного врача. Кроме того, не предполагается непрерывность обучения через заданные временные интервалы. Таким образом, данную систему дистанционного обучения можно рассматривать лишь как составную часть в подготовке специалиста.

В связи с этим существовала потребность в разработке индивидуализированной системы обучения врача-педиатра в виде циклического процесса исходя из индивидуальных возможностей объема восприятия зрительной информации, показателей скорости переработки информации, показателя средней продуктивности и коэффициента выносливости каждого обучающегося, с последующим индивидуальным подбором режима обучения. Кроме того, была впервые предложена математическая формула, по которой проводится учет индивидуальной компетенции, выраженной в кредитных единицах, по результатам прохождения контрольных интерактивных тестов через заданные временные интервалы, равные 6 месяцам. Система включает подготовленный учебно-методический комплекс, персональные компьютеры, Интернет как в on-line, так и off-line режиме, интерактивные тесты.

Задачей настоящего изобретения является повышение качества профессиональной подготовки конкретного врача-педиатра в целях оказания высококвалифицированной медицинской помощи.

Техническим результатом представленного изобретения является повышение эффективности обучения врача-педиатра профессиональным знаниям и навыкам с помощью индивидуализированной системы обучения с учетом индивидуальных возможностей обучающегося, в том числе объема восприятия зрительной информации, показателей скорости переработки информации, показателя средней продуктивности и коэффициента выносливости, с последующим индивидуальным подбором режима работы в индивидуализированной системе обучения для повышения глубины и качества усвоения образовательной информации.

Данная индивидуализированная система обучения обеспечивает:

- выработку качественного навыка врачебных действий (диагностических, лечебных, профилактических);

- овладение необходимыми практическими врачебными навыками и манипуляциями;

- способность принимать правильные самостоятельные и адекватные решения в различных клинических ситуациях;

- непрерывно поддерживать профессиональные знания и навыки на высоком уровне;

- мотивировать врача-педиатра к непрерывному повышению профессиональной компетенции.

Технический результат достигается за счет следующей сущности изобретения.

Сущность изобретения

Для повышения качества обучения врача-педиатора профессиональным знаниям и навыкам проводится подготовка с помощью индивидуализированной системы обучения с учетом исходного уровня профессиональных знаний, объема зрительного восприятия, показателей скорости переработки информации, продуктивности и выносливости на основе балльно-рейтинговой оценки. Индивидуализированная образовательная система состоит из цикличных последовательных очных и дистанционных этапов обучения (фиг.1). Очный этап, как было установлено в результате исследования, необходимо повторять каждые 12-18 месяцев. Дистанционный этап начинается после очного этапа обучения и должен повторяться каждые 6 месяцев до следующего очного этапа обучения.

Перед началом очного обучения проводится тестирование исходного уровня знаний врача-педиатра с контролем времени выполнения теста. Врачу-педиатру предлагается тест из набора 30 интерактивных компьютерных заданий включающих:

- видеофрагменты диагностических, лечебных процедур и манипуляций с последующей оценкой врачом состояния пациента по заданным на видео параметрам или оценкой правильности выполнения лечебных мероприятий (фиг.2);

- активные области экрана с изображением анатомической области с возможностью выбора с помощью курсора мыши места проведения лечебного воздействия (фиг.3);

- определение алгоритма правильной последовательности обследования или лечения пациента (фиг.4);

- расчет дозы препарата исходя из клинической ситуации (фиг.5).

После завершения тестирования врач получает процентную оценку за пройденный тест. Как было установлено, процентная оценка является недостаточной для единой системы оценки и профессионального уровня знаний, поэтому было предложено переводить ее в балльную. Результат, соответствующий правильности ответа или действия в интервале от 91% до 100%, соответствует «4» баллам, от 81% до 90% - «3» баллам, от 76% до 80% - «2» баллам, от 61% до 75% - «1» баллу, и менее 60% соответствует «0» баллов. Кроме этого, проводится учет времени выполнения теста. Время выполнения теста менее 30 минут соответствует «4» баллам, от 30 до 45 минут соответствует «3» баллам, 45-60 минут соответствует «2» баллам, и время выполнения теста более 60 минут соответствует «1» баллу. Особенности подачи образовательного материала требуют оценки степени восприятия зрительной информации.

После интерактивного компьютерного тестирования изучают индивидуальные особенности устойчивости и концентрации произвольного внимания врача с помощью корректурного теста Ландольта (В.Н. Сысоев. "Тест Ландольта. Диагностика работоспособности". СПб., 2000). Нами впервые предложено дистанционное проведение корректурного теста с помощью интерактивной компьютерной программы. Преподаватель предварительно вносит в программу массив из колец Ландольта и задает необходимые параметры нужного выбора и время проведения пробы. Врач выбирает из массива представленных на экране колец Ландольта, заданный тип разрыва колец с помощью курсора мыши, при этом автоматически фиксируется время выполнения теста. Определяют следующие показатели: скорость переработки информации, показатель средней продуктивности и коэффициент выносливости. Вычисленные с помощью теста Ландольта показатели выражаются в разработанной по изобретению балльной шкале. Показатель скорости переработки информации (S) имеет четыре интервальных коридора значений. Коридору минимального интервала присваивается «1» балл, а каждому последующему на «1» балл больше. Таким образом, коридору максимального интервала будет соответствовать «4» балла. Показатель средней продуктивности имеет четыре интервальных коридора значений. Коридору минимального интервала присваивается «1» балл, а каждому последующему на «1» балл больше. Таким образом, коридору максимального интервала будет соответствовать «4» балла. Коэффициент выносливости имеет три интервальных коридора значений. Коридору минимального интервала присваивается «1» балл, а каждому последующему на «1» балл больше. Таким образом, коридору максимального интервала будет соответствовать «3» балла.

Далее суммируют полученные баллы всех тестов и рассчитывают балльный рейтинг конкретного врача-педиатра, как показано в таблице 1.

Таблица 1
Балльно-рейтинговая шкала оценки интерактивного компьютерного теста и теста Ландольта
Результат тестирования на входе очного обучения
91%-100% 4 балла
81%-90% 3 балла
76%-80% 2 балла
61%-75% 1 балл
<60% 0 баллов
максимально 4 балла
Время тестирования на входе очного обучения
менее 30 минут 4 балла
30-45 минут 3 балла
45-60 минут 2 балла
более 60 минут 1 балл
максимально 4 балла
Результаты теста Ландольта
Показатель скорости переработки информации (S) баллы
>1,36 4 балла
1,20-1,36 3 балла
0,74-1,19 2 балл
<0,73 1 балл
максимально 4 балла
Показатель средней продуктивности (Рт) баллы
>330 4 балла
250-330 3 балла
150-250 2 балл
<150 1 балл
максимально 4 балла
Коэффициент выносливости Кр баллы
<0% 3 балла
0-15% 2 балл
>15% 1 балл
максимально 3 балла

После определения балльного рейтинга врача-педиатра, который всесторонне оценивает обучающегося, выбирают группу обучения врача-педиатра в индивидуальной образовательной системе по таблице 2.

Таблица 2
Проведение распределения на группы по балльно-рейтинговой оценке
от 19 до 12 баллов группа обучения 1
от 11 до 6 баллов группа обучения 2
5 и менее баллов группа обучения 3

Результат от «19» до «12» баллов соответствует группе обучения 1, результат от «11» до «6» баллов соответствует группе обучения 2, и результат «5» и менее баллов соответствует группе обучения 3.

Проводится процесс обучения в соответствии с результатами предварительного тестирования с использованием дополнительных интерактивных компьютерных обучающих материалов с аудио- и видеоизображением диагностических, лечебных алгоритмов и процедур в трех группах обучающихся.

После завершения очного этапа проводится тестирование итогового уровня знаний врача-педиатра, определение количества неусвоенных модулей очного этапа и определение объема зрительной информации с помощью корректурной таблицы Анфимова. Врачу-педиатру предлагается тест из набора 30 интерактивных компьютерных заданий, включающих наборы симптомов, показателей, манипуляций, в соответствии полученными на очном этапе знаниями. После завершения тестирования врач получает процентную оценку за пройденный тест. Как указано выше, процентная оценка является недостаточной для единой системы оценки и профессионального уровня знаний и развития зрительного восприятия, поэтому она переводится в балльную. Результат от 91% до 100% соответствует «4» баллам, от 81% до 90% - «3» баллам, от 76% до 80% - «2» баллам, от 61% до 75% - «1» баллу, и менее 60% соответствует «0» баллов.

После интерактивного компьютерного тестирования изучают индивидуальные особенности восприятия зрительной информации врачом-педиатром и вычисляют объем зрительной информации, количество ошибок, допущенных при выполнении теста, и количество просмотренных знаков. Вычисленные с помощью теста Анфимова показатели выражаются в разработанной нами балльной шкале. Показатель объема зрительной информации имеет четыре интервальных коридора значений. Коридору минимального интервала присваивается «1» балл, а каждому последующему на «1» балл больше. Таким образом, коридору максимального интервала будет соответствовать «4» балла. Показатель количества ошибок имеет четыре интервальных коридора значений. Коридору минимального интервала присваивается «1» балл, а каждому последующему на «1» балл больше. Таким образом, коридору максимального интервала будет соответствовать «4» балла. Показатель количества просмотренных знаков имеет четыре интервальных коридора значений. Коридору минимального интервала присваивается «1» балл, а каждому последующему на «1» балл больше. Таким образом, коридору максимального интервала будет соответствовать «4» балла.

Определение количества неусвоенных модулей очного этапа осуществляется с помощью разработанной во время исследования математической формулы и учитывает, что 1 кредитная единица соответствует 36 академическим часам обучения.

- Расчет успеваемости обучения проводится следующим образом:

- вычисляется трудоемкость в кредитных единицах очного и дистанционного этапов индивидуализированной системы обучения по формуле (1).

- Трудоемкость 1-го модуля этапа вычисляется по формуле:

максимальная трудоемкость этапа в кредитах /количество модулей в этапе = трудоемкость одного модуля (2).

- Максимальный результат тестирования в 100% соответствует полному усвоению этапа, т.е. эталонному результату усвоения 100% = максимальная трудоемкость всего этапа в кредитах. Допустимая минимальная граница результата обучения составляет 60%. Максимальный процент превышения (МП) допустимой границы обучения равен 40%, т.е. 100%-60%=40% (3).

- Фактический процент превышения допустимой минимальной границы обучения конкретного врача вычисляется следующим образом:

Результат тестирования врача (ТВ) - 60% = Фактический процент превышения врача (ФП) (4).

- Вычисляется коэффициент результата врача (КРВ): ФП/МП=КРВ (5).

- Далее вычисляется фактический результат обучения врача-педиатра: максимальная трудоемкость в кредитах всего этапа × КРВ = фактический результат обучения в кредитах (6). Полученный результат вносится в базу данных врача.

- Для дальнейшей циклической траектории обучения вычисляют количество модулей, которое не было усвоено врачом в ходе обучения на данном этапе:

(максимальная трудоемкость всего этапа в кредитах - фактический результат обучения в кредитах)/ трудоемкость одного модуля = количество неусвоенных модулей (7). Конкретная тематика модулей, которые врач получит для последующего обучения, определяется преподавателем по результатам анализа теста.

Далее суммируют полученные баллы всех тестов и рассчитывают балльный рейтинг конкретного врача-педиатра по таблице 3.

Таблица 3
Балльно-рейтинговая шкала оценки интерактивного компьютерного теста, объема неусвоенного материала и теста Анфимова
Результат тестирования на выходе очного обучения
91%-100% 4 балла
81%-90% 3 балла
76%-80% 2 балла
61%-75% 1 балл
<60% 0 баллов
максимально 4 балла
Результаты теста по таблице Анфимова
Количество просмотренных знаков баллы
более 1000 4 балла
900-1000 3 балла
800-900 2 балла
менее 700 1 балл
максимально 4 балла
Количество ошибок баллы
2 и менее 4 балла
3-5 3 балла
6-10 2 балла
11 и более 1 балл
максимально 4 балла
Объем зрительной информации баллы
593 бита - 534 бита 4 балла
533 бита - 475 бит 3 балла
474 бита - 415 бит 2 балла
414 бит> 1 балл
максимально 4 балла
Количество неусвоенных модулей
0 модулей 2 балла
1-2 модуля 1 балла
3-5 модулей 0 баллов
максимально 2 балла

После этого в соответствии с набранным рейтингом определяют индивидуальную группу обучения врача-педиатра на дистанционном этапе в индивидуализированной образовательной системе таблица 4.

Таблица 4
Проведение распределения на группы по балльно-рейтинговой оценке
от 18 до 11 баллов группа обучения 1
от 10 до 5 баллов группа обучения 2
5 и менее группа обучения 3

Результат от «18» до «11» баллов соответствует группе обучения 1, результат от «10» до «5» баллов соответствует группе обучения 2, и результат «5» и менее баллов соответствует группе обучения 3.

Способ поясняется на следующем примере.

Врач-педиатр Иванов И. начинает подготовку с помощью индивидуализированной системы обучения с очного этапа в объеме 72 академических часа, которые разделены на 5 модулей. Перед началом очного обучения Иванову И. предлагается тест из набора 30 интерактивных компьютерных заданий для определения исходного уровня знаний врача-педиатра. Врач показывает результат данного теста, равный 75%, что соответствует «1» баллу по разработанной нами балльно-рейтинговой шкале. Время выполнения теста 37 минут, что соответствует «3» баллам. После интерактивного компьютерного тестирования изучают индивидуальные особенности устойчивости и концентрации произвольного внимания врача с помощью корректурного теста Ландольта. Определяются показатели скорости переработки информации, соответственно у Иванова 1,1; показатели средней продуктивности, соответственно 235, и коэффициента выносливости, соответственно 10%, а затем выражают каждый из указанных показателей в баллах по балльно-рейтинговой шкале и получают соответственно «2» балла, «2» балла, «2» балла. После этого с помощью таблицы 1 определяют общую балльно-рейтинговую оценку врача Иванова, и получают сумму в «10» баллов. После определения балльного рейтинга врача-педиатра, который всесторонне оценивает обучающегося, выбирают группу обучения врача-педиатра в индивидуальной образовательной системе по таблице 2. Иванов И. обучается в индивидуальной группе обучения 2. После завершения очного этапа проводится тестирование итогового уровня знаний врача-педиатра и определение объема зрительной информации с помощью корректурной таблицы Анфимова. По результату интерактивного компьютерного тестирования врач набрал 82%, что по балльно-рейтинговой шкале равно «3» баллам. С помощью теста Анфимова определяем показатель объема зрительной информации Иванова, который равен 450 битам или «3» баллам. Показатель количества ошибок этого врача 6 или «2» балла. Показатель количества просмотренных знаков 977 или «3» балла.

Определение количества неусвоенных модулей очного этапа вычисляется по формулам (1)-(7): Вычисляется максимальная трудоемкость в кредитных единицах очного этапа непрерывной индивидуальной смешанной образовательной системы по формуле (1): 72/36=2 кредитные единицы. Трудоемкость 1-го модуля этапа вычисляется по формуле: максимальная трудоемкость в кредитах этапа /количество модулей в этапе = трудоемкость одного модуля (2), т.е. 2/5=0,4 кредита трудоемкость одного модуля. Максимальный результат тестирования в 100% соответствует полному усвоению этапа, т.е. эталонному усвоению 100% учебного материала = максимальной трудоемкости всего этапа в кредитах. Таким образом, 100% усвоения = 2 кредитным единицам. Результат тестирования врача-педиатра после очного этапа обучения составил 82%, что по балльно-рейтинговой шкале равно «3» баллам. Вычисляем для него фактический процент превышения допустимой границы обучения: Результат тестирования врача (ТВ) - 60%=Фактический процент превышения врача (ФП) (4): 82%-60%=22%. Вычисляется коэффициент результата врача (КРВ): ФП/МП=КРВ (5): 22%/40%=0,55. Далее вычисляем фактический результат обучения врача-педиатра: трудоемкость в кредитах всего этапа × КРВ = фактический результат обучения в кредитах (6): 2×0,55=1,1. Полученный результат вносим в базу данных врача. Для дальнейшей циклической траектории обучения вычисляем количество модулей, которое не было усвоено врачом в ходе обучения на данном этапе: (максимальная трудоемкость всего этапа в кредитах - фактический результат обучения в кредитах)/ трудоемкость одного модуля = количество не усвоенных модулей (7): (2-1,1)/0,4=2 модуля или «1» балл по балльно-рейтинговой шкале.

Далее суммируют полученные баллы (3+3+2+3+1) всех показателей и определяют балльно-рейтинговую оценку (таблица 3) и индивидуальную группу обучения (таблица 4) врача-педиатра на дистанционном этапе в индивидуальной образовательной системе. Иванов И. получает «12» баллов и обучается в индивидуальной группе обучения 1.

Таким образом, дальнейшая траектория обучения этого врача-педиатра предполагает переход к дистанционному этапу обучения каждые 6 месяцев в объеме 2-х неусвоенных модулей и последующего после их изучения интерактивного компьютерного тестирования в группе обучения 1. Конкретная тематика модулей, которые врач получит для последующего обучения, определяется преподавателем по результатам анализа интерактивного компьютерного теста.

1. Индивидуализированная система обучения как способ формирования профессиональной компетентности врачей-педиатров включает такие основные компоненты, как вопросы, тесты, задачи с ответами для тренинга, практические задания для самостоятельной работы, итоговое тестирование с помощью сетевых технологий - удаленного доступа к материалам курса через интернет и электронную почту, и отличается тем, что способ осуществляют с помощью выявления индивидуальных особенностей скорости и объема зрительного восприятия образовательного материала каждым врачом-педиатром, заключающийся в:
интерактивном компьютерном тестировании перед обучением с определением исходного уровня профессиональных знаний, времени выполнения тестирования и определением умственной работоспособности на основании дистанционного интерактивного компьютерного теста Ландольта с последующей оценкой по балльно-рейтинговой шкале исходных профессиональных знаний, скорости переработки информации, продуктивности и выносливости, с последующим
распределением по трем уровням обучения и выбором очного или очного и дистанционного обучения для каждого обучаемого в зависимости от балльно-рейтинговой оценки, и
проведением процесса обучения в соответствии с результатами предварительного тестирования с использованием дополнительных интерактивных компьютерных обучающих материалов с аудио- и видеоизображением диагностических, лечебных алгоритмов и процедур в трех группах обучающихся, а затем
проведение в конце очного этапа итогового интерактивного компьютерного тестирования с предъявлением графических изображений с активными областями, аудио- и видеозаписей, моделирующих симптомы или клинические случаи с выявлением неусвоенного врачом-педиатром объема знаний, а также
предъявление обучающемуся врачу-педиатру таблицы Анфимова с определением скорости восприятия зрительной информации, после чего проводится
составление для обучающегося на основании выявленных индивидуальных особенностей в скорости восприятия зрительной информации и объема неусвоенного материала необходимого объема тематического материала с последующим дистанционным обучением и
распределение по трем уровням дистанционного обучения для каждого обучаемого в зависимости от его балльно-рейтинговой оценки.

2. Способ по п.1, отличающийся тем, что очный этап повторяется каждые 12-18 месяцев.

3. Способ по п.2, отличающийся тем, что проводят интервальное дистанционное интерактивное компьютерное тестирование каждые 6 месяцев.



 

Похожие патенты:

Изобретение относится к медицине, а именно к экспериментальной хирургии, и может быть использовано для моделирования осложненной стенозом дуоденальной язвы. Способ включает введение крысам в подслизистый слой двенадцатиперстной кишки через прокол боковой стенки живота 3% раствора соляной кислоты.
Изобретение относится к экспериментальной медицине и может быть использовано для изучения стимуляции эндогенных механизмов васкуляризации сердечной мышцы. В качестве средства, обеспечивающего такую стимуляцию, в эксперименте на крысах предлагается использовать стрептозотоцин.
Изобретение относится к экспериментальной медицине и может быть использовано для разработки мероприятий, направленных на предупреждение летального исхода инфекционного процесса на фоне ожоговой травмы.
Изобретение относится к медицине, а именно к экспериментальной хирургии, и касается прогнозирования исхода множественной скелетной травмы у животных. Для этого регистрируют показатель ректальной температуры у кроликов породы Шиншилла в условиях основного обмена после нанесения травмы на фоне лечения препаратами анальгин, линкомицин и инфузии раствора глюкозы.

Изобретение относится к экспериментальной медицине и может быть использовано для разработки медикаментозного лечения острого панкреонекроза с последующим наблюдением за его эффективностью с помощью гистологического исследования.

Изобретение относится к экспериментальной медицине, в частности к разработке способа повышения регенераторной активности эпителия кишечника после лучевой нагрузки.

Изобретение относится к медицине, в частности к экспериментальной фармакологии, и может быть использовано для коррекции и профилактики эндотелиальной дисфункции.

Изобретение относится к медицине, в частности к экспериментальной фармакологии, и может быть использовано для профилактики и лечения алкогольного и токсического гепатита.

Изобретение относится к экспериментальной медицине, а именно к экспериментальной хирургии, и может быть использовано для моделирования ахалазии кардии. Способ включает верхнесрединную лапаротомию, обеспечение доступа к нижней трети пищевода и последующее введение раствора бензалкония хлорида в область гастроэзофагеального перехода.

Изобретение относится к области экспериментальной медицины и патофизиологии и касается моделирования остеорезорбции в условиях репаративного остеогенеза. Для этого экспериментальному животному внутрибрюшинно однократно вводят раствор селенометионина в концентрации 2 мкг/мл в дозе 10 мкг/кг веса тела.

Изобретение относится к экспериментальной медицине, в частности к радиобиологии и комбустиологии, и может быть использовано для изучения механизмов патогенеза сочетанных радиационных поражений (СРП), включая феномен взаимного отягощения, а также для испытания новых способов и средств профилактики и лечения. Моделирование осуществляют путем последовательного радиационного воздействия на крыс. Сначала проводят общее Y-облучение. Затем после освобождения кожи от волосяного покрова 10% раствором сернистого натрия проводят местное локальное облучение кожи жестким рентгеновским излучением. Для защиты тела животного от рентгеновского излучения свинцовую пластину хирургическим путем имплантируют под кожу животного. Используют пластину, имеющую линейную прорезь, позволяющую производить локальное облучение кожи спины, соответствующее площади поражения 10% поверхности тела у крыс. Способ позволяет воспроизводить одинаковые по степени тяжести лучевую болезнь и глубокие лучевые ожоги и изучать влияние площади и степени поражения кожи на течение и исходы СРП в зависимости от выбранных доз общего облучения. 3 табл., 1 ил.

Изобретение относится к экспериментальной медицине, а именно - к изучению патофизиологии репродуктивной системы, и может быть использовано для моделирования синдрома хронической ановуляции. Для этого используют неполовозрелую самку крыс линии Vistar в возрасте 30 дней, массой 30-35 г, при физиологическом отсутствии регулярных эстральных четырехдневных циклов. Моделирование проводят в течение одного месяца. При этом через питательный зонд ежедневно утром животному вводят раствор, содержащий 2 капли препарата Циклодинон, разведенный в 1 мл дистиллированной воды. Способ обеспечивает развитие атрезии незрелых фолликулов, отсутствие желтых тел в яичниках и циклических изменений в эндометрии. 2 пр., 2 ил.
Изобретение относится к медицине и может быть использовано для предоперационной подготовки деминерализованного костного трансплантата (ДКТ) к пластике в эксперименте. Для этого до имплантации ДКТ в течение 2-х часов выдерживают в 0,9% растворе хлористого натрия при комнатной температуре. После чего ДКТ в течение 10 минут подвергают воздействию ультразвука частотой 44±4,4 кГц и амплитудой колебаний от 30 до 50 мкм в 0,9% растворе хлористого натрия, подогретом до температуры 36°C. Способ позволяет ускорить репаративные процессы при трансплантации фрагмента ДКТ заданной формы у экспериментальных животных и существенно повысить скорость остеогенеза на участке плоской кости черепа после трансплантации.

Изобретение относится к медицине, а именно к экспериментальной морфологии, а также к разработке и изучению способов коррекции негативных эффектов низких температур на организм животного в эксперименте. Охлаждение крыс проводят при температуре -15°C по 3 часа в день на протяжении 4-х недель. Перед сеансом охлаждения осуществляют пероральное введение животным препарата моллюскам в дозе 10 мг/кг массы тела ежедневно. Способ обеспечивает тканепротекторное воздействие на предстательную железу, в т.ч. за счет анаболического эффекта используемого препарата, что позволяет повысить адаптационные возможности железы в условиях экстремально низких температур. 4 ил., 2 табл.,1 пр.
Изобретение относится к экспериментальной медицине, в частности к патологической физиологии и гематологии, и касается моделирования гемолитической анемии. Для этого нелинейной белой крысе однократно внутрибрюшинно вводят 0,4%-ный раствор 2-бутоксиэтанола в дозировке 20 мг/кг массы тела животного (4 мг на животное). Способ обеспечивает специфичное моделирование приобретенной токсической гемолитической анемии без развития значимых изменений токсического характера в печени и почках. 3 пр.

Изобретение относится к медицине, а именно к ортопедии, биомеханике, оперативной хирургии и топографической анатомии, анатомии, антропологии. На невостребованном трупе выполняют задний доступ к тазобедренному суставу типа Кохера-Лангенбека. Отсепаровывают наружные ротаторы бедра от места их анатомического прикрепления к бедру. Обнажают головку и шейку бедренной кости, края вертлужной впадины. Укладывают спицу-направитель, определяющую линию плоскости входа в вертлужную впадину в горизонтальном сечении тазобедренного сустава. Производят остеотомию шейки и головки бедренной кости в горизонтальной плоскости. Проводят спицу-направитель через основание вершины большого вертела в направлении снаружи кнутри вдоль продольной оси шейки и головки бедренной кости по горизонтальной плоскости остеотомированной головки и шейки бедра до субхондрального отдела медиального края головки бедра. Затем при согнутой нижней конечности в коленном суставе под углом 45° моделируют угол горизонтальной инклинации в тазобедренном суставе путем ротации бедра внутренним вращением голени так, чтобы угол пересечения спиц-направителей при измерении был 56°. Осуществляют моделирование укороченных наружных ротаторов бедра путем временной фиксации наружных ротаторов бедра к месту их анатомического прикрепления в вертельной ямке бедра в условиях угла горизонтальной инклинации в тазобедренном суставе 56° с незначительным натяжением наружных ротаторов бедра. Это будет соответствовать наружной ротационной контрактуре тазобедренного сустава 1-й степени. Далее выполняют аналогичные действия при значении угла горизонтальной инклинации в тазобедренном суставе 46°, что будет соответствовать наружной ротационной контрактуре тазобедренного сустава 2-й степени. При значении угла горизонтальной инклинации в тазобедренном суставе 36° - будет соответствовать наружной ротационной контрактуре тазобедренного сустава 3-й степени. Способ позволяет проводить точные антропометрические измерения при истинном угле за счет анатомо-хирургического моделирования наружной ротационной контрактуры тазобедренного сустава в эксперименте. 5 ил.

Изобретение относится к экспериментальной медицине и иммунологии и может быть использовано для оценки эффекта электромагнитных волн миллиметрового диапазона (КВЧ) в условиях трехсоставной модели цитостатического воздействия. Для этого в группе животных воздействуют на область тимуса электромагнитными волнами миллиметрового диапазона (КВЧ) при длине волны 5,6 мм в течение 2 недель с перерывами в 1-2 дня. Разовая экспозиция физического фактора при этом составляет 1-2 минуты в течение 2 недель с перерывами 1-2 дня. Затем осуществляют имитацию хирургического оперативного вмешательства путем вскрытия и зашивания брюшины. На седьмой день после операции осуществляют трехкратное фракционированное внешнее гамма-облучение животных в разовой дозе 2,5 Зв через день. Затем животным внутрибрюшинно вводят циклофосфан в дозе 4 мг/100 г массы тела животного. На 14 день после инъекции цитостатика проводят забой животных с исследованием крови и иммунокомпетентных органов. При этом определяют клеточность тимуса (КТ) в 106кл./100 мг его массы, функциональную активность лимфоцитов в тесте с нитросиним тетразолием (НСТ) в ед., содержание антителообразующих клеток (АОК) по N.K.Erne в кл./чП в селезенке, апоптоз в аннексиновом тесте (АП) в %, содержание циркулирующих иммунных комплексов сыворотки крови (ЦИК) в ед. После этого расчитывают индекс эффекта физического фактора (ИФ) по формуле: И Ф = А П × Н С Т × К Т × 100 Ц И К × А О К . При величине ИФ меньше 48 констатируют наличие иммуномодулирующего эффекта КВЧ-воздействия. Способ обеспечивает возможность объективной оценки эффекта воздействия электромагнитных миллиметровых волн КВЧ в условиях трехсоставной модели цитостатического воздействия. 1 табл., 3 пр.
Изобретение относится к космической медицине, в частности к способам моделирования эффектов пониженной гравитации в экспериментальных исследованиях. Способ включает перевод человека на период дневного бодрствования в ортостатическое положение с положительным углом наклона тела относительно горизонтальной оси. Этот угол равен процентному отношению заданного уровня гравитации к земному уровню гравитации, соответствующему углу ортостатического положения плюс (+) 90 градусов. На период ночного отдыха человека переводят в горизонтальное положение. Способ позволяет проводить длительные (более одного месяца) комплексные исследования при моделировании физиологических сдвигов в соответствии с рассчитанными коэффициентами для пониженного, по сравнению с земным, уровня гравитации на поверхностях других планет, например Луны или Марса. 1 з.п. ф-лы.
Изобретение относится к экспериментальной медицине и может быть использовано для изучения бактериальной инфекции на фоне ожоговой травмы. Способ заключается в том, что в качестве экспериментальной модели используют кроликов, которых в течение месяца содержат при температуре воздуха 24-26°C и кормят пищей, богатой злаками и древесиной. Затем под наркозом кроликам наносят ожог площадью 10-20% площади тела животного. Смесь культурабельных бактерий Pseudomonas aeruginosa и Staphylococcus aureus в концентрации 105-106 микробных клеток в общем объеме 1 мл смешивают с равным количеством 1% раствора фермента β-амилазы при температуре 24-26°C. Через 30 минут полученную взвесь вводят кроликам подкожно в объеме 1 мл смеси, учет развития бактериальной инфекции у экспериментальных животных проводят в течение 21 дня. Способ позволяет моделировать процесс в виде острой генерализованной инфекции, при которой вегетативные формы бактерий наиболее чувствительны к повреждающим воздействиям, что создает условия для разработки эффективных методов лечебно-профилактических мероприятий, направленных на ограничение инфекционных заболеваний. 2 табл., 2 пр.
Изобретение относится к экспериментальной медицине, психологии, психиатрии и касается определения психосоматического статуса животного при моделировании «боевого стресса». Для формирования стрессовой обстановки на двое суток крысам ограничивают прием пищи, сохраняя только питье. Помещают их в устройство, обеспечивающее ограниченное пространство, в котором между животными установлен только визуальный контакт без физического соприкосновения. На третьи сутки производят взрыв бездымного порохового заряда под устройством. Спустя 3 часа после взрыва в крови животного определяют уровень гемоглобина, натрия, мочевой кислоты, аланинаминотрансферазы и аспартатаминотрансферазы, СОЭ, количество лейкоцитов. Оценивают поведение в течение последующих 8 часов. Оценку поведения производят по наличию позитивных реакций: повышенная активность, тревожность, суетливость, невозможность удерживаться на месте, чрезмерная агрессивность, отсутствие акта дефекации и мочеиспускания. Учитывают также негативные реакции: адинамичность, вплоть до полного обездвиживания, бездействие, статическая реакция, отказ от питания, трусость, наличие акта дефекации и мочеиспускания. Через 6 суток после начала эксперимента производят повторный анализ крови. В течение последних 2 суток эксперимента проводят оценку уровня стрессируемости животных по «реакции испуга» и психической работоспособности - по скорости нахождения выхода из двойного T-образного лабиринта. Изобретение повышает достоверность модели за счет воспроизведения реальной боевой обстановки, точности определения психосоматического статуса лабораторного животного, подвергшегося испытанию. 2 з.п. ф-лы, 1 пр.

Изобретение относится к медицине. При осуществлении способа перед обучением проводят интерактивное компьютерное тестирование. Оценку осуществляют по балльно-рейтинговой шкале исходных профессиональных знаний, скорости переработки информации, продуктивности и выносливости. Распределяют по трем уровням обучения и выбирают для каждого обучаемого очное или очное и дистанционное обучение. Процесс обучения проводят в соответствии с результатами предварительного тестирования с использованием дополнительных интерактивных компьютерных обучающих материалов с аудио- и видеоизображением диагностических, лечебных алгоритмов и процедур. В конце очного этапа проводят итоговое интерактивное компьютерное тестирование с предъявлением графических изображений с активными областями, аудио- и видеозаписей, моделирующих симптомы или клинические случаи, и выявляют неусвоенный врачом-педиатром объем знаний. Предъявляют обучающемуся врачу-педиатру таблицы Анфимова и определяют скорость восприятия зрительной информации. После чего составляют для обучающегося необходимый объем тематического материала. Далее осуществляют дистанционное обучение и распределение по трем уровням дистанционного обучения для каждого обучаемого в зависимости от его балльно-рейтинговой оценки. Изобретение позволяет повысить эффективность обучения врача-педиатра профессиональным знаниям и навыкам за счет индивидуализированной системы обучения. 2 з.п. ф-лы, 5 ил., 4 табл., 1 пр.

Наверх