Эпоксидное связующее для полимерных композиционных материалов


 


Владельцы патента RU 2527086:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) (RU)

Изобретение относится к эпоксидным композиционным связующим, используемым для производства композиционных материалов, например стеклопластиков и углепластиков, изготавливаемых методами вакуумной инфузии и RTM, широкого спектра применения, например, в авиационной, аэрокосмической, судостроительной, автомобильной и других отраслях промышленности. Эпоксидное связующее для полимерных композиционных материалов включает эпоксидную диановую смолу, разбавитель и отвердитель. В качестве разбавителя используют фурфуролацетоновую смолу, а в качестве отвердителя - триэтаноламинтитанат, при следующем соотношении компонентов связующего, мас.ч.: эпоксидная диановая смола - 100; фурфуролацетоновая смола - 5…50; триэтаноламинтитанат - 5…15. Техническим результатом изобретения является создание связующего на основе эпоксидной композиции, обладающего повышенными эксплуатационными характеристиками, в частности пониженной вязкостью и высокой термостойкостью, которое может быть эффективно использовано при производстве композиционных материалов, изготавливаемых методами вакуумной инфузии и RTM. 1 пр., 2 табл.

 

Изобретение относится к эпоксидным композиционным связующим, используемым для производства композиционных материалов, изготавливаемых преимущественно методами вакуумной инфузии и RTM (resin transfer molding), например стеклопластиков и углепластиков широкого спектра применения, в частности, в авиационной, аэрокосмической, судостроительной, автомобильной, а также других отраслях промышленности.

Широко распространенные в настоящее время технологии производства полимерных композиционных материалов (ПКМ), такие как вакуумная инфузия или RTM, накладывают жесткие ограничения на реологические свойства используемых для их получения связующих. Вязкость таких связующих, в общем случае, не должна превышать 300…400 мПа·с. Наиболее распространенные связующие - эпоксидные смолы, имеют вязкость, на порядок превышающую эти значения. Понизить вязкость за счет повышения температуры связующего не всегда возможно, особенно в случае использования эпоксидных систем холодного отверждения. Для решения этой проблемы используют различные растворители либо активные разбавители.

Широкое использование растворителей (ацетон, спирты) является дешевым и простым приемом уменьшения вязкости, но при этом в процессе отверждения смолы растворитель испаряется, что вызывает дополнительные технологические проблемы, связанные с удалением паров растворителя, которые остаются в композиционном материале и ухудшают его физико-механические свойства.

Из уровня техники известны связующие на основе эпоксидной диановой смолы и отвердителя триэтаноламинтитаната (ТЭАТ). Подобные связующие обладают высокими механическими характеристиками и традиционно используются при создании стеклопластиков и углепластиков (Э.С.Зеленский и др., Рос.хим. ж. (Ж. Рос.хим. об-ва им. Д.И. Менделеева), 2001, т.XLV, №2, С.56-74). Такие связующие пригодны для получения композиционных материалов методом ручной выкладки и другими методами, в которых не требуется низкой вязкости связующего.

Известны активные разбавители, такие как глицидиловые эфиры алифатических диолов (ДЭГ), которые частично решают проблему снижения вязкости, однако их использование приводит к ухудшению механических свойств композиционного материала и его теплостойкости (Ли X., Невилл К. Справочное руководство по эпоксидным смолам, Москва, Энергия, 1973. - 416 с.).

Известно эпоксидное связующее для препрегов, включающее эпоксидную диановую смолу, полифункциональную эпоксидную смолу, бромсодержащую эпоксидную диановую смолу, отвердитель - бис-N,N-(диметилкарбамидо)дифенилметан и органический растворитель - спирто-ацетоновую смесь, причем в качестве эпоксидной диановой смолы оно содержит эпоксидную диановую смолу или ее смесь с диглицидиловым эфиром диэтиленгликоля, а в качестве бромсодержащей эпоксидной диановой смолы - олигомерный продукт конденсации тетрабромдифенилолпропана и эпихлоргидрина молекулярной массы 600... 1500, представляющий собой смесь диглицидилового эфира тетрабромдифенилолпропана и его димера и тримера в соотношении (3…4):1:(0,2…0,8) или смесь диглицидилового эфира тетрабромдифенилолпропана, его димера и тримера с хлоргидриновым эфиром в соотношении (3…4):1:(0,2…0,8):(0,5…0,6) при следующем соотношении компонентов, мас.ч.:

эпоксидная диановая смола или ее смесь с диглицидиловым эфиром диэтиленгликоля 18…50

полифункциональная эпоксидная смола 18…60

указанная бромсодержащая эпоксидная смола 18…34

бис-N,N-(диметилкарбамидо)дифенилметан 3…6

спирто-ацетоновая смесь 70…105 (см. патент РФ №2335515, МПК C08L 63/00, C08J 5/24, В32В 27/38, опубл. 10.10.2008).

В результате анализа известного связующего необходимо отметить, что его ключевыми недостатками является наличие галогенсодержащей смолы, которая выделяет опасные вещества при горении, а также высокая стоимость данного компонента. Большое содержание пассивного растворителя спирто-ацетоновой смеси снижает технологичность и приводит к дополнительному порообразованию при отверждении, что снижает качество получаемых ПКМ.

Известно эпоксидное связующее для армированных пластиков, включающее эпоксидную смолу, отвердитель - анилинофенолоформальдегидную смолу, модификатор, ускоритель отверждения и растворитель - спиртоацетоновую смесь при массовом соотношении спирта и ацетона 1:1, причем оно дополнительно содержит 2,2'-бис-(3,5-ди-бром-4-гидроксифенил)-пропан, в качестве эпоксидной смолы - эпоксидно-диановую смолу, в качестве модификатора - уретановый форполимер и в качестве ускорителя отверждения - 3,3'-дихлор-4,4'-диаминодифенилметан при следующем соотношении компонентов связующего, мас.ч.:

эпоксидная диановая смола 100
анилинофенолоформальдегидная смола 80…100
2,2'-бис-(3,5-ди-бром-4-гидроксифенил)-пропан 120…140
уретановый форполимер 50…65
3,3 '-дихлор-4,4'-диаминодифенилметан 8…15
спиртоацетоновая смесь (при массовом соотношении спирта и ацетона 1:1) 225…290

(см. патент РФ №2323236, МПК C08L 63/02, C08L 61/14, C08J 5/24, В32В 17/10, опубл. 27.04.2008).

В результате анализа известной композиции необходимо отметить, что она обладает сходными недостатками с предыдущей, кроме того, при использовании технологии вакуумной инфузии для пропитки данной композицией углеволокна, летучий ацетон, присутствующий в составе в большом количестве, снижает уровень вакуума в системе, что приводит к загущению смолы и образованию непропитанных смолой фрагментов ткани, а, следовательно, отрицательно сказывается на качестве получаемого изделия.

Известно эпоксидное связующее для композиционных материалов, включающее эпоксидную диановую смолу, изометилтетрагидрофталевый ангидрид в качестве растворителя и ускоритель отверждения (отвердитель), причем в качестве ускорителя отверждения используют алканоламин при следующем соотношении компонентов, мас.ч.:

эпоксидная диановая смола 100
изометилтетраидрофталевый ангидрид 60…80
ускоритель отверждения 1,0…2,0

(см. патент РФ №2327718, МПК C08L 63/02, C08G 59/50, В32В 27/38, С07С 213/04, опубл. 27.06.2008) - наиболее близкий аналог.

В результате анализа известной композиции необходимо отметить, что она обладает очень высокой вязкостью даже при повышенных температурах, что резко ограничивает ее использование при технологиях вакуумной инфузии, кроме того, высокая вязкость усложняет получение продукции высокого качества.

Техническим результатом настоящего изобретения является создание связующего на основе эпоксидной композиции, обладающего повышенными эксплуатационными характеристиками, в частности, пониженной вязкостью и высокой термостойкостью, которое может быть эффективно использовано при производстве композиционных материалов, изготавливаемых методами вакуумной инфузии и RTM.

Указанный технический результат обеспечивается тем, что в эпоксидном связующем для полимерных композиционных материалов (ПКМ), включающем эпоксидную диановую смолу, разбавитель и отвердитель, новым является то, что в качестве разбавителя используют фурфуролацетоновую смолу, а в качестве отвердителя - триэтаноламинтитанат при следующем соотношении компонентов связующего, мас.ч.:

- эпоксидная диановая смола - 100

- фурфуролацетоновая смола - 5…50

- триэтаноламинтитанат - 5…15.

Сущность изобретения поясняется таблицами, где: табл.1 - зависимость соотношения ДФА/ФА от условий реакции конденсации фурфурола с ацетоном (прим.: ДФА - дифурфурилиденацетон, ФА - монофурфурилиденацетон); табл.2 - зависимость вязкости эпоксидных связующих от температуры смеси.

Эпоксидное связующее для ПКМ включает эпоксидную диановую смолу, разбавитель и отвердитель. В качестве разбавителя используют фурфуролацетоновую смолу, а в качестве отвердителя - триэтаноламинтитанат. Соотношение компонентов связующего выбрано следующим образом (мас.ч.): эпоксидная диановая смола - 100; фурфуролацетоновая смола - 5…50; триэтаноламинтитанат - 5…15.

Разбавитель (фурфуролацетоновая смола) представляет собой смесь продуктов конденсации фурфурола и ацетона, полученную в водной среде при катализе щелочи NaOH. Основными продуктами реакции конденсации являются монофурфурилиденацетон (ФА), дифурфурилиденацетон (ДФА) и продукты их частичной полимеризации. Соотношение продуктов реакции зависит от соотношения реагентов, концентрации щелочи, температурного режима реакции, времени реакции и количества растворителя (воды). В табл.1 представлены соотношения между основными продуктами реакции ДФА/ФА в зависимости от условий реакции и соотношения фурфурола и ацетона.

Фурфуролацетоновая смола представляет собой низковязкую жидкость при соотношении ДФА/ФА от 0,5:1 до 1,25:1. Эффективность фурфуролацетоновой смолы как разбавителя зависит от ее состава. Наиболее эффективным разбавителем является продукт конденсации фурфурола и ацетона с соотношением основных продуктов реакции ДФА/ФА 1:1.

Фурфуролацетоновую смолу синтезировали следующим образом. В емкости, снабженной магнитной мешалкой, термометром и обратным холодильником, к раствору 0.5 моль фурфурола и рассчитанного количества ацетона (от 1 до 1,5 мольных частей) прибавляли заранее приготовленный и охлажденный раствор щелочи NaOH так, чтобы температура реакционной смеси не поднималась более чем на 5 градусов выше комнатной. Время реакции варьировалось от 2 до 7 часов в зависимости от загрузки исходных веществ. После окончания реакции реакционную смесь нейтрализовывали 50% раствором серной кислоты до рН=5, водный слой отделяли, органическую фазу промывали водой до нейтральной реакции, вновь отделяли и сушили в вакууме мембранного насоса 2 ч при температуре 50°С. Соотношение продуктов реакции определяли с помощью ЯМР 1Н спектроскопии. Результаты экспериментов представлены в табл.1.

Исследования показали, что фурфуролацетоновая смола, содержащая в качестве основных компонентов ФА и ДФА в соотношении 1:1, снижает вязкость эпоксидной диановой смолы марки ЭД-20 при соотношении компонентов ЭД-20/фурфуролацетоновая смола от 100/10 до 100/40 (наиболее эффективно от 100/15 до 100/30) в области температур от 25 до 75°С (наиболее эффективно от 40 до 60°С).

Результаты реологических исследований вязкости композиций на основе эпоксидной диановой смолы ЭД-20 и фурфуролацетоновой смолы приведены в табл.2.

Особенностью использования выбранного разбавителя (фурфуролацетоновой смолы), непосредственно влияющей на указанный технический результат, является то, что он способен при нагревании вступать в химическое взаимодействие с эпоксидной смолой и отвердителем, то есть является активным компонентом, а не пластификатором, и поэтому даже в больших количествах незначительно влияет на термостойкость эпоксидной смолы.

Применение эпоксидных смол в производстве композитных материалов довольно часто ограничено высокой вязкостью эпоксидных смол даже при относительно высокой температуре. Вязкость полимерной композиции, в общем случае, не должна превышать 300…400 МПа·с. Поэтому соотношение массовых частей между эпоксидной диановой смолой и разбавителем подбирается в зависимости от требуемых технологических параметров вязкости, но не более чем 50 частей разбавителя на 100 частей эпоксидной диановой смолы. Большее количество разбавителя приводит к падению термической устойчивости композиции, а меньше 5 частей - к недостаточному уменьшению вязкости. Количество отвердителя рассчитывают на количество эпоксидной смолы, содержащейся в композиции. Количество отвердителя повышают с увеличением количества разбавителя, но не более чем до 15 частей на 100 частей эпоксидной диановой смолы. В случае добавления отвердителя в количестве, меньшем 5 частей по массе, отверждение может просто не произойти, тогда как превышение стехиометрически необходимого количества отвердителя сверх максимально указанного приводит к тому, что он остается непрореагировавшим, в результате в конечной композиции увеличивается доля низкомолекулярного вещества, которое с большой долей вероятности может вызывать определенные негативные последствия, начиная от коррозии и заканчивая увеличением хрупкости изделий.

Измерение вязкости смеси эпоксидной диановой смолы и разбавителя проводили следующим образом. В стакане на 250 мл в необходимых количествах смешивали эпоксидную диановую смолу и разбавитель с известным соотношением ДФА/ФА так, чтобы масса смеси составила 150 г. Было приготовлено несколько композиций, с массовой долей разбавителя от 5 до 30. Полученную композицию перемешивали с помощью механической мешалки в течение 15…20 минут, затем нагревали до 50…60°С, помещали в эксикатор и вакуумировали с помощью мембранного насоса до прекращения выделения пузырьков. Образцы смолы термостатировали с точностью 0,2°С и измеряли вязкость с помощью вискозиметра Brookfield-LV в диапазоне температур от 23 до 80°С. Результаты представлены в табл.2.

Выбор триэтаноламинтитаната (ТЭАТ) в качестве отвердителя объясняется тем, что, во-первых, он обеспечивает температуру стеклования отвержденной композиции до 140°С, во-вторых, он обеспечивает жизнеспособность эпоксидной смолы, содержащей отвердитель, до 72 часов при 5°С, что повышает технологичность композиции. Жизнеспособность в данном контексте означает, что после добавления отвердителя при 5°С смола может оставаться в жидко-вязком состоянии. Соответственно это и определяет технологичность. Так как если смола быстро твердеет, ее использование ограничено, и, например, можно не успеть произвести заливку. Чем дольше композиция остается твердой после добавления отвердителя, тем более технологичной она считается).

В общем случае эпоксидную смолу готовили смешиванием эпоксидной диановой смолы с отвердителем и разбавителем механической мешалкой в течение 30 мин при 50°С. Полученную композицию вакуумировали до прекращения выделения пузырьков газа, после чего использовали в течение 24 часов для изготовления требуемых отвержденных образцов ПКМ.

Пример приготовления композиции.

В 100 г эпоксидной диановой смолы марки ЭД-20 вводили 14 г ТЭАТ и 30 г фурфуролацетоновой смолы и перемешивали до гомогенности с помощью механической мешалки, подогревая на водяной бане до 50°С. Полученную смесь выдерживали в вакууме мембранного насоса при температуре 50…60°С в течение 40 минут. Полученную смолу выливали в силиконовые формы и отверждали ступенчато по следующему режиму: Т°С/(час)=100/2+140/2+160/2.

Полученное связующее на основе эпоксидной композиции обладает повышенными эксплуатационными характеристиками, в частности, пониженной вязкостью (см. данные табл.2) и высокой термостойкостью. Так, например, у композиции с 10 частями фурфуролацетоновой смолы температура стеклования составляла 126,3°С.

С использованием описанного выше связующего был изготовлен ПКМ. Изготовление вели по способу вакуумного инфузионного процесса в двойном пакете, описанному в патенте США US 7,413,694, опубликованного 19.08.2008 г., который предполагает укладку в пакет стопки слоев углеткани между вакуумными пленками и тканью с введением трубки для подачи смолы и откачки вакуума и герметизации пакета с помощью герметика Герлен по периметру, с последующей подачей внутрь пакета нагретой до 50°С эпоксидной диановой смолы как аналога предлагаемого эпоксидного связующего, которая постепенно пропитывала углеткань. Данный способ также предполагает после окончания пропитки нагрев до 100°С пакета для отверждения связующего с помощью нагреваемого стола и затем постотверждение в сушильном шкафу.

Для получения по данной методике полимерного композиционного материала десять отрезов углеткани марки Porcher 03257 с нитью марки TohoTenax НТА40 Е13 ЗК размером 30 на 40 см были сложены в стопку и убраны в пакет. Связующее, содержащее 100 частей эпоксидной диановой смолы марки ЭД-20, 30 частей фурфуролацетоновой смолы и 14 частей ТЭАТ, подавалось в пакет с помощью вакуума, создаваемого масляным насосом при температуре подогреваемого стола 50°С. Время инфузии составило 122 мин. Пакет был отвержден в ступенчатом температурном режиме: Т°С/(час)=100/2+140/2+160/2. Теплостойкость полученного ПКМ, измеренная по методу Мартенса, составляла 130°С.

Данный ПКМ, полученный с применением нового эпоксидного связующего, предполагается использовать в автомобильной и авиционной промышленности.

Таблица 1
Соотношение ацетон: фурфурол температура,°С время, ч Мольный экв. воды Концентрация NaOH, М ДФА/ФА
1:1 70-75 4 5 1Д1 0,33
1:1 70-75 4 5 1,11 0,54
1:1.5 70-75 4 5 1,11 1,56
1:1.5 70-75 4 5 1,11 1,67
1:1 70-80 4 5 1Д1 0,71
1:1.5 Комнатная 2 41 1,36 3,81
1:1 Комнатная 2 27 1,37 0,66
1:1.25 Комнатная 2 33 1,13 1,16
1:1.25 Комнатная 2 33 1,13 1,07

Таблица 2

Количество частей фурфурол ацетоновой смолы на 100 частей ЭД-20 Температура, °С
25 30 35 40 45 50 55 60 65 70
0 Средняя динамичеcкая вязкость, мПа·с 5407 4117 3497 3130 1313 920 700 643 400 213
5 5853 5553 4400 2710 1407 957 410 310 263 127
10 7630 5220 3857 2530 843 597 397 233 203 130
15 5423 4837 2917 1583 963 550 360 190 143 123
20 2517 2113 1747 1117 567 393 260 183 127 70
25 1730 1549 1077 880 553 380 207 153 107 83
30 1723 1477 1200 683 453 257 190 130 97 88

Эпоксидное связующее для полимерных композиционных материалов, включающее эпоксидную диановую смолу, разбавитель и отвердитель, отличающееся тем, что в качестве разбавителя используют фурфуролацетоновую смолу, а в качестве отвердителя - триэтаноламинтитанат, при следующем соотношении компонентов связующего, мас.ч.:

эпоксидная диановая смола 100
фурфуролацетоновая смола 5…50
триэтаноламинтитанат 5…15



 

Похожие патенты:
Изобретение относится к области получения композиционных материалов на основе смол, диспергированных наномодификатором - углеродными нанотрубками (УНТ), которые могут быть использованы для введения в высоковязкие основы при получении полимерных композиционных материалов широкого спектра применения.
Изобретение относится к средствам защиты зданий и сооружений от природных и техногенных экстремальных ситуаций, а именно к пожаробезопасным светопрозрачным строительным конструкциям, и может быть использовано в качестве огнезащитной прослойки при производстве огнезащитного остекления различных составляющих противопожарных преград в составе окон, балконов, дверей, перегородок и ограждений.
Изобретение относится к области создания эпоксидных связующих для полимерных композиционных материалов (ПКМ) конструкционного назначения на основе волокнистых углеродных наполнителей, которые могут быть использованы в авиационной, космической промышленности, радиоэлектронике и других областях техники.
Изобретение относится к гибридным органонеорганическим нанокомпозиционным покрытиям. Композиция для получения матрицы с фотокаталитической активностью включает золь на основе элементорганического соединения и эпоксидной составляющей, в которой в качестве элементоорганического соединения в составе композиции использован алкоксид титана при следующем соотношении компонентов, мас.%: алкоксид титана 30-70, эпоксидная составляющая золя 30-70, при этом в качестве эпоксидных соединений композиция содержит диглицидиловый эфир дициклогексилпропана, а в качестве алкоксида титана - тетрабутоксититан.

Изобретение относится к области создания эпоксидных связующих для полимерных композиционных материалов конструкционного назначения на основе волокнистых углеродных наполнителей, которые могут быть использованы в авиационной, космической, автомобиле-, судостроительной промышленности и других областях техники.

Изобретение относится к композициям эпоксидной смолы и может использоваться в качестве матричной смолы армированного волокнами композиционного материала. Композиция содержит эпоксидную смолу [А], отверждающий агент на основе амина [B] и блок-сополимер [C].

Настоящее изобретение относится к композиции смолы с цепным механизмом отверждения для армированного волокнами композиционного материала. Описаны варианты композиции смолы с цепным механизмом отверждения для получения армированного волокнами композиционного материала, содержащего: алициклическое эпоксидное соединение (А), содержащее два оксида циклогексена в молекуле; и модифицированную эпоксидную смолу (В) бисфенольного типа А, представленную приведенной ниже формулой (1), где в модифицированной эпоксидной смоле (В) бисфенольного типа А каждый R1 представляет собой -СН(CH3)-, и R2 представляет собой оксиалкиленовую группу, и содержание алициклического эпоксидного соединения (А) составляет от 25 до 90 масс.%, где общее количество компонента (А) и компонента (В) принято за 100 масс.%: [Химическое соединение 1] в формуле (1) n представляет собой целое число, равное 1 или более.
Изобретение относится к производству полупроводящих материалов, используемых для противокоронной защиты высоковольтных обмоток электрических машин. Предложена полупроводящая лента, содержащая волокнистую подложку с нанесенной на нее полупроводящей композицией, включающей (мас.%): хлорсульфированный полиэтилен (6,5-12,0), эпоксидную смолу (0,5-3,0), катализатор отверждения (0,01-0,2), токопроводящий наполнитель (6,0-40,0) и органический растворитель (остальное).
Изобретение относится к производству полупроводящих материалов, используемых для противокоронной защиты высоковольтных обмоток электрических машин. Предложена полупроводящая лента, содержащая волокнистую подложку с нанесенной на нее полупроводящей композицией, включающей токопроводящий наполнитель и полимерное связующее, состоящее из хлорсульфированного полиэтилена в смеси с полифункциональной и монофункциональной эпоксидными смолами, ангидридом и аэросилом.

Изобретение относится к армирующим изделиям, в частности к армирующим изделиям периодического профиля, для изготовления изделий из бетона, газобетона методом горячего формования при одновременном воздействии агрессивных сред.

Настоящее изобретение относится к соединению VB формулы (I) или (II): , где R1 и R3 каждый независимо представляет собой алкил, содержащий от 1 до 12 атомов C, возможно замещенный одним или более галогеном, или арил, содержащий от 5 до 8 атомов C, и R2 означает водород или алкил, содержащий от 1 до 12 атомов C, возможно замещенный одним или более галогеном; или R1 и R2 вместе образуют двухвалентную углеводородную группу, представляющую собой карбоциклическое кольцо, имеющее от 5 до 8 атомов углерода, и R3 означает алкил, содержащий от 1 до 12 атомов C, возможно замещенный одним или более галогеном, или арил, содержащий от 5 до 8 атомов C, или R2 и R3 вместе образуют двухвалентную углеводородную группу, представляющую собой карбоциклическое кольцо, имеющее от 5 до 8 атомов углерода, и R1 представляет собой алкил, содержащий от 1 до 12 атомов C, возможно замещенный галогеном, или арил, содержащий от 5 до 8 атомов C, и R4 и R5 независимо друг от друга означают алкил, содержащий от 1 до 12 атомов C; A означает (a+b)-валентный радикал полиаминополиэпоксидного аддукта после удаления (a+b) первичных аминогрупп; a означает целое число от 0 до 3; и b означает целое число от 1 до 4; при условии, что сумма a и b равна целому числу от 1 до 4, а полиэпоксид, составляющий основу полиаминополиэпоксидного аддукта, представляет собой полиэпоксид Е, предпочтительно диэпоксид Е1, и имеет эпоксиэквивалентную массу (EEW) от 65 до 500 г/экв. Также описаны способ получения указанного выше соединения VB формулы (I) или (II), отверждающая композиция для эпоксидных смол, его содержащая, и его применение, а также двух- или трехупаковочная композиция эпоксидной смолы, отвержденная композиция для строительства и применения двух- или трехупаковочной композиции эпоксидной смолы. Технический результат - получение новых соединений простым и быстрым способом из широкодоступных исходных веществ, приемлемых в качестве отвердителей эпоксидных смол, обладающих стабильностью при хранении и хорошей вязкостью, что способствует быстрому и полному затвердеванию эпоксидной смолы с обеспечением хорошей адгезии покрытия к подложке и хороших эстетических и механических свойств полученного покрытия. 7 н. и 12 з.п. ф-лы, 4 табл., 31 пр.

Изобретение относится к стабилизированным полимерным композициям, содержащим бромированный полимерный антипирен, предназначенным, в частности, для получения пеноматериала. Полимерная композиция содержит блочный полимер, например полимер или сополимер стирола, алифатический бромсодержащий полимер и смесь, по меньшей мере, одного алкилфосфита и, по меньшей мере, одного эпоксидного соединения. Комплект стабилизаторов, в который входят алкилфосфиты и эпоксидные соединения, является очень эффективным для предупреждения реакций поперечного сшивания, которые протекают, когда алифатический бромсодержащий полимер подвергается воздействию высоких температур, которые встречаются в процессах переработки из расплава. Изобретение позволяет улучшить процесс переработки, предупредить гелеобразование бромсодержащего полимера при переработке. 2н. и 9з.п. ф-лы, 3табл., 17пр.

Изобретение относится к области получения высокопрочных полимерных композиций с использованием циклоалифатических диокисей и может быть использовано для получения связующих для композитных материалов, покрытий, клеев и других целей. Полимерная композиция для получения связующих и покрытий на основе эпоксидных смол и азотсодержащего отвердителя, представляющего собой продукт взаимодействия амина с циклоалифатическими или циклоалифатически-алифатическими диокисями, полученными прямым эпоксидированием ненасыщенных соединений, причем в процессе взаимодействия в реактор вначале вводят жидкий или расплавленный алифатический, ароматический, циклоалифатический или алкиленароматический амин, а затем прибавляют к нему диокись из расчета 3÷20-кратного мольного избытка амина, после чего вводят акрилат и аминоспирт, реакционную смесь перемешивают в течение от 20 до 180 минут при температуре от 30 до 180°С, который затем вводят в смесь эпоксидной смолы с активным или пассивным разбавителем и добавляют низкомолекулярное алифатическое или ароматическое гидроксилсодержащее соединение и перемешивают при Т=15-95°С в течение 20÷120 минут. Изобретение позволяет улучшить технологические свойства полимерной композиции при ее переработке, а также повысить деформационную теплостойкость с одновременным улучшением диэлектрических свойств при температурах от 150 до 200°С и после воздействия горячей и перегретой воды. 2 табл., 1 пр.

Изобретение относится к отверждающейся композиции для получения электроизоляционного конструкционного материала для электрических или электронных компонентов. Отверждающаяся композиция содержит эпоксидную смолу, отвердитель и композицию наполнителей. Композиция наполнителей содержит волластонит и аморфный диоксид кремния. Поверхность одного из наполнителей обрабатывается силаном. Отвержденный продукт получен отверждением указанной отверждающейся композиции. Изобретение позволяет использовать эту отверждающуюся композицию прямо в керамическом корпусе коммутирующего устройства, и она имеет высокую стойкость к растрескиванию. 3 н. и 6 з.п. ф-лы, 3 табл., 2 пр.
Изобретение относится к химической технологии герметиков и заливочных компаундов и предназначено для использования в производстве пьезокерамических приемоизлучающих гидроакустических устройств, используемых для ультразвуковых систем визуализации подводных объектов и акустической микроскопии и других технологических и технических задач. Композиция включает триглицерид 12-гидрокси-цис-9 октадеценовой кислоты, дифенилметандиизоцианат и циклогексанол. Соотношение компонентов следующее, мас.ч.: триглицерид 12-гидрокси-цис-9 октадеценовой кислоты - 100; дифенилметандиизоцианат - 36,0-45,;, циклогексанол - 5,0-15,0. Результат заключается в повышении жизнеспособности, сокращении времени отверждения и улучшении прочностных и адгезионных характеристик полимерной композиции и уменьшении ее пористости. 1 табл., 6 пр.

Изобретение относится к композиции смолы, используемой в качестве герметика, применению такой композиции, герметику для батареи с органическим электролитом, батарее с органическим электролитом и функциональному химическому продукту, содержащему вышеуказанную композицию смолы. Композиция смолы содержит: (A) эпоксидную смолу, содержащую по меньшей мере (E1) эпоксидную смолу, имеющую ароматическое кольцо и алициклическую структуру, и (Е2) эпоксидную смолу, модифицированную каучукоподобным полимером со структурой ядро/оболочка, а также (B) латентный отверждающий агент. Технический результат - получение композиции смолы для использования в качестве герметика, обладающей превосходной адгезионной способностью по отношению к металлу и имеющей высокую устойчивость к органическому растворителю. 6 н. и 16 з.п. ф-лы, 4 табл., 3 ил., 30 пр.

Изобретение относится к антенной технике, в частности к поглотителям электромагнитных волн, используемых в конструкциях антенн для оптимизации их радиотехнических характеристик, устранения резонансных явлений и уменьшения паразитных отражений от проводящих объектов, расположенных вблизи антенн. Поглотитель электромагнитных волн состоит из эпоксидно-эластомерного связующего, в котором распределен магнитный наполнитель - нанокристаллический порошок, представляющий собой частицы сплава Fe-Cu-Nb-Si-B с нанокристаллической структурой с содержанием в частицах сплава нанокристаллов соединений α-(Fe,Si) объемной плотностью (2,8÷2,9)·10-5 1/нм3, при следующем соотношение компонентов, мас.ч.: эпоксидный эластомер 100 отвердитель 10 нанокристаллический порошок 200÷700, при этом нанокристаллический порошок имеет размер частиц от 1 до 100 мкм. Технический результат - использование нового поглотителя обеспечило уменьшение коэффициента отражения в нижней и верхней части диапазона УВЧ, при удовлетворительном коэффициенте отражения в средней части диапазона, монотонность формы диаграмм направленности малогабаритной широкополосной антенны. 1 ил.
Изобретение относится к неводным отвердителям для эпоксидных смол, диспергированных в воде, способу получения его, а также к композиции эпоксидной смолы, применяемой в красках, клеях или аппретах, полученных с использованием этого отвердителя. Композиция отвердителя содержит (а) первый аминовый аддукт, (b) при необходимости второй аминовый аддукт, (c) гидрофобный алкиламин или диамин, или гидрофобную углеводородную смолу, или их сочетание, (d) компонент, содержащий амино- или полиаминополиалкиленгликолевые фрагменты, аминосилан и (е) при необходимости металлическую пудру. Первый аминовый аддукт представляет собой продукт реакции между интермедиатом с концевыми аминовыми группами и монофункциональным эпоксидным соединением. Интермедиат получен по реакции между, по меньшей мере, одним полиамином или полиамидоамином, содержащим ,по меньшей мере, 3 активных аминовых атома водорода, и, по меньшей мере, одной эпоксидной смолой с функциональностью, по меньшей мере,1,5. Композиция краски или покрытия содержит композицию эпоксидной смолы с указанным отвердителем и цинковую металлическую пудру. Неводный отвердитель обеспечивает жизнеспособность связующего, составляющую несколько часов, и в присутствии металла, такого как цинк, образования водорода почти не наблюдается. Композиция является устойчивой при хранении в течение нескольких часов рабочей жизнеспособности, что позволяет получать отвержденные покрытия, демонстрирующие хорошие эксплуатационные характеристики.6 н. и 7 з.п. ф-лы, 7 табл., 5пр.

Изобретение относится к отверждаемым системам, которые могут быть использованы для изготовления компонентов и деталей электрического оборудования, в частности электрических изоляторов. Отверждаемая система включает по меньшей мере две композиции: композицию (А) на основе эпоксидной смолы, содержащую, мас.%: 0,1-5 неорганической тиксотропной добавки, 0,1-10 органического гелеобразователя, по меньшей мере 10 наполнителя; и композицию (В) на основе отвердителя для эпоксидной смолы, содержащую, мас.%: 0,1-5 неорганической тиксотропной добавки, 0,1-10 органической тиксотропной добавки, по меньшей мере 10 наполнителя. Система обладает хорошей текучестью, что позволяет использовать ее в экономичном «силиконовом способе». 4 н. и 5 з.п. ф-лы, 4 пр., 5 табл., 10 ил.

Изобретение относится к полимерным композициям на основе циановых эфиров, упрочняемым волокнистыми наполнителями и применяемым для создания конструкционных полимерных композиционных материалов (ПКМ) с рабочей температурой до 200°C и изделий из них, которые могут быть использованы в авиационной, аэрокосмической, автомобильной, судостроительной и других отраслях промышленности. Также изобретение относится к препрегам, включающим вышеуказанную полимерную композицию и изделиям, изготовленным из таких препрегов. Полимерная композиция на основе цианового эфира содержит эпоксидную смолу, которая является модификатором и выбирается из группы: эпоксидиановая смола, эпоксиноволачная смола, азотсодержащая эпоксидная смола или их смеси, причем соотношение компонентов в композиции следующее, мас.%: циановый эфир 55-95, эпоксидная смола 5-45. Композиция может дополнительно содержать растворитель, выбранный из группы: ацетон, этилацетат, изопропиловый спирт или их смеси. Препрег включает описанную выше полимерную композицию и волокнистый наполнитель, причем соотношение компонентов в препреге, мас.%: полимерная композиция 30,0-50,0, волокнистый наполнитель 50,0-70,0. В качестве волокнистого наполнителя в препреге можно использовать ткани или жгуты или ленты на основе углеродных или стеклянных волокон. Изделие изготовлено из описанного выше препрега путем формования. Технический результат - низкая вязкость полимерной композиции на основе цианового эфира в процессе переработки и гомогенность состава, обеспечивающие возможность ее переработки по препреговой технологии и позволяющие получать влагостойкие изделия из ПКМ с высокими термомеханическими характеристиками, с небольшим коэффициентом вариации физико-механических характеристик, хорошим сохранением прочностных свойств при повышенных температурах (до 200°C), а также снижение степени усадки композиции в процессе переработки. 3 н. и 2 з.п. ф-лы, 3 табл., 12 пр.
Наверх