Способ изготовления наноструктурированного чувствительного элемента датчика вакуума и датчик вакуума

Изобретение относится к измерительной технике и может использоваться при изготовлении датчиков вакуума для измерения давления разреженного газа в вакуумных установках различного назначения. Предложен способ изготовления наноструктурированного чувствительного элемента датчика вакуума, заключающийся в образовании гетероструктуры из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10%, где 40% - массовая доля диоксида кремния (SiO2), 50% - массовая доля диоксида олова (SnO2), 10% - массовая доля оксида индия (In2O3), путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl) и двухводный хлорид олова (SnCl2·2H2O), а также дополнительно 4,5-водный нитрат индия (In(NO3)3·4,5H2O). Предложен также датчик вакуума с наноструктурой, изготовленной по предлагаемому способу. Технический результат - повышенная чувствительность датчика по сравнению с ранее известными. 2 н. и 1 з.п. ф-лы, 3 ил.

 

Предлагаемое изобретение относится к измерительной технике и может быть использовано при изготовлении датчиков вакуума для измерения давления разреженного газа в вакуумных установках различного назначения.

Известны датчики вакуума, содержащие терморезистор, выполняющий функции чувствительного элемента, и способы их изготовления [1-3]. Известны датчики давления на основе нано- и микроэлектромеханических систем, содержащие тонкопленочный резистор, и способы их изготовления [4, 5]. Их общим недостатком является низкая чувствительность в области низкого вакуума.

Наиболее близким по технической сущности к предлагаемому решению является способ изготовления датчика вакуума с наноструктурой [6]. Он заключается в том, что образуют наноструктурированный чувствительный элемент - гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO2)50%(SnO2)50%, путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl) и двухводный хлорид олова (SnCl2·2H2O). Тетраэтоксисилан (ТЭОС) и этиловый спирт (95%) смешивают в соотношении 1:1,047 при комнатной температуре и выдерживают определенное время, а на втором этапе в полученный раствор вводят дистиллированную воду в соотношении 1:0,323 соляную кислоту (HCl) в соотношении 1:0,05, двухводный хлорид олова (SnCl2·2H2O) в соотношении 1:0,399 и перемешивают определенное время, где за единицу принят объем ТЭОС. После смешивания тетраэтоксисилана и этилового спирта на первом этапе смесь выдерживают в течение 30 минут до перехода ко второму этапу, а на втором этапе после введения дистиллированной воды, соляной кислоты (HCl) и двухводного хлорида олова (SnCl2·2H2O) смесь перемешивают в течение 60 минут. Золь ортокремниевой кислоты, содержащий гидроксид олова, наносят на подложку из кремния (Si) с помощью центрифуги с использованием дозатора при скорости вращения центрифуги 3000 об/мин в течение 2 минут, а отжиг осуществляют при температуре 600°С в течение 30 минут в воздушной среде.

Датчик вакуума с наноструктурой, изготовленный по способу [6] содержит корпус, установленную в нем гетерогенную структуру из тонких пленок материалов, образованную на подложке из полупроводника, тонкопленочный полупроводниковый резистор и контактные площадки к нему, сформированные в гетерогенной структуре (наноструктурированном чувствительном элементе), выводы корпуса и контактные проводники, соединяющие контактные площадки с выводами корпуса. Полупроводниковый резистор изготовлен в виде сетчатой наноструктуры (SiO2)50%(SnO2)50%, где 50% - массовая доля диоксида кремния (SiO2), 50% - массовая доля диоксида олова (SnO2).

Недостатком такого способа и датчика вакуума на его основе является относительно низкая чувствительность при измерении давлений в области низкого вакуума.

Техническим результатом изобретения является повышение чувствительности датчика вакуума.

Это достигается тем, что в известном способе изготовления наноструктурированного чувствительного элемента датчика вакуума, заключающемся в том, что образуют гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор в виде сетчатой наноструктуры путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан (ТЭОС) и этиловый спирт, смесь выдерживают около 30 минут, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl), двухводный хлорид олова (SnCl2·2H2O) и перемешивают около 60 минут, после чего его закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников, в соответствии с предлагаемым изобретением, сетчатую наноструктуру полупроводникового резистора формируют в виде (SiO2)40%(SnO2)50%(In2O3)10%, где 40% - массовая доля диоксида кремния (SiO2), 50% - массовая доля диоксида олова (SnO2), 10% - массовая доля оксида индия (In2O3), а на втором этапе дополнительно вводят 4,5-водный нитрат индия (In(NO3)3·4,5H2O).

В этом способе изготовления наноструктурированного чувствительного элемента датчика вакуума на втором этапе в полученный раствор до перемешивания вводят 4,5-водный нитрат индия (In(NO3)3·4,5H2O) в соотношении 1:0,08, а двухводный хлорид олова (SnCl2·2H2O) в соотношении 1:0,320, при этом дистиллированную воду вводят в соотношении 1:0,323, а соляную кислоту (HCl) в соотношении 1:0,05, где за единицу принят объем ТЭОС.

При этом в датчике вакуума, изготовленному по предлагаемому способу, содержащем корпус, установленную в нем гетерогенную структуру из тонких пленок материалов, образованную на подложке из полупроводника, тонкопленочный полупроводниковый резистор в виде сетчатой наноструктуры и контактные площадки к нему, сформированные в гетерогенной структуре, выводы корпуса и контактные проводники, соединяющие контактные площадки с выводами корпуса, в соответствии с предлагаемым изобретением, сетчатая наноструктура полупроводникового резистора сформирована в виде (SiO2)40%(SnO2)50%(In2O3)10%, где 40% - массовая доля диоксида кремния (SiO2), 50% - массовая доля диоксида олова (SnO2), 10% - массовая доля оксида индия (In2O3).

На фиг.1 показана конструкция датчика вакуума, который изготавливается по предлагаемым способам. Датчик вакуума содержит корпус 1 (фиг.1), наноструктурированный чувствительный элемент - гетерогенную структуру 2 (из тонких пленок материалов), в которой сформирован тонкопленочный полупроводниковый резистор 3, контактные площадки 4, контактные проводники 5, выводы корпуса 6, штуцер 7, изоляторы 8, подложку 9 (из кремния), основание для крепления гетерогенной структуры 10.

Согласно предлагаемого способа золь ортокремниевой кислоты, содержащий гидроксид олова, приготавливают в два этапа для нанесения на подложку 9 из кремния (фиг.1). На первом этапе смешивают тетраэтоксисилан и этиловый спирт, смесь выдерживают в течение 30 минут до перехода ко второму этапу. Время выдержки установлено, исходя из времени протекания реакции обменного взаимодействия между тетраэтоксисиланом и этиловым спиртом, в результате которой образуется этиловый эфир ортокремневой кислоты. На втором этапе после введения дистиллированной воды, соляной кислоты (HCl), двухводного хлорида олова (SnCl2·2H2O) и 4,5-водного нитрата индия (In(NO3)3·4,5H2O) смесь перемешивают в течение 60 минут. Время процесса установлено, исходя из времени протекания реакции гидролиза эфира, в результате которой образуется ортокремневая кислота. А также, исходя из того, что за это же время на этом этапе происходит образование гидроксида олова (Sn(OH)2) и протекает реакция поликонденсации ортокремневой кислоты.

Золь ортокремниевой кислоты, содержащий гидроксид олова и гидроксид индия, наносят на подложку 9 (фиг.1) из кремния (Si) с помощью центрифуги с использованием дозатора при скорости вращения центрифуги 3000 об/мин в течение 2 минут. Использование таких режимов центрифуги позволяет достичь необходимой толщины, равномерности и сетчатой наноструктуры пленки (SiO2)40%(SnO2)50%(In2O3)10% (тонкопленочного полупроводникового резистора 3), а также частично удалить растворитель из этой пленки.

В качестве подложки из кремния (Si) могут быть использованы пластины кремния КЭФ (111) толщиной 200-300 мкм не окисленные, и окисленные промышленным способом в кислороде. Последние имеют окисный слой SiO2, толщина которого около 800 нм.

Отжиг осуществляют при температуре 600°С в течение 30 минут в воздушной среде. Использование таких параметров процесса позволяет окончательно удалить растворитель из пор на поверхности и в объеме пленки, а также осуществить реакции по разложению ортокремневой кислоты (Si(OH)4) до диоксида кремния (SiO2) и гидроксида олова (Sn(OH)2) до диоксида олова (SnO2), а также гидроксида (In(ОН)3) до оксида индия (In2O3).

Наличие окисного слоя SiO2 на поверхности подложки из Si не препятствует электрическому соединению тонкопленочного полупроводникового резистора 3 (фиг.1), выполненного в виде сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10%, с полупроводниковой подложкой 9. При изготовлении контактных площадок 4 к такому резистору из Ag путем вжигания при температуре 600°С обеспечивается электрическое соединение тонкопленочного полупроводникового резистора 3 и подложки 9 в местах контактных площадок 4. То есть тонкопленочный полупроводниковый резистор 3 оказывается параллельно включенным полупроводниковому резистору, в качестве которого выступает полупроводниковая подложка 9. При этом тонкий окисный слой SiO2 является одной из пленок материалов гетерогенной структуры 2 (фиг.1).

Датчик вакуума работает следующим образом. Тонкопленочный полупроводниковый резистор 3 при помощи выводов корпуса 6 включают в мостовую измерительную цепь (мост) в качестве одного из ее плеч, с помощью подстроечного резистора (на рисунке не показан), мост балансируют (показания измерительного прибора устанавливают на нуль при начальном давлении, выбранном за точку отсчета).

При увеличении или уменьшении давления в корпусе датчика вакуума увеличивается или уменьшается (соответственно) количество молекул газа, которые участвуют в теплообмене. Если количество молекул газа уменьшается (вследствие уменьшения давления), уменьшается теплоотдача от чувствительного элемента - гетерогенной структуры 2 и тонкопленочного полупроводникового резистора 3 (сформированного в ней). Их температура нагрева увеличивается, следовательно, уменьшается сопротивление тонкопленочного полупроводникового резистора 3 (сопротивление полупроводников уменьшается с повышением температуры).

Так как тонкопленочный полупроводниковый резистор 3 включают в мостовую измерительную цепь, то с изменением давления происходит ее разбаланс, который является функцией давления.

Поскольку тонкопленочный полупроводниковый резистор 3 изготовлен по предлагаемому способу в виде сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10%, на основе золя ортокремниевой кислоты, содержащего гидроксид олова и гидроксид индия, на подложке из кремния, то с уменьшением давления в сетчатой наноструктуре (SiO2)40%(SnO2)50%(In2O3)10%, происходит процесс десорбции газов, в частности кислорода, приводящий к уменьшению сопротивления тонкопленочного полупроводникового резистора 3. Дополнительное приращение к изменению сопротивления резистора повышает чувствительность в диапазоне низкого вакуума.

Сетчатая наноструктура (SiO2)40%(SnO2)50%(In2O3)10%, представляет собой зерна диоксида олова (SnO2) с примесью оксида индия (In2O3), заключенные в диэлектрическую матрицу диоксида кремния (SiO2), размер которых соизмерим с размерами области пространственного заряда (длинной экранирования Дебая). Наличие в такой сетке захваченных из окружающей среды атомов газа, в частности кислорода, уменьшает размер областей пространственного заряда, зоны их перекрытия и тем самым препятствует перемещению электрических зарядов по сетке. При десорбции происходит возвращение электронов в зону проводимости полупроводников, и проводимость растет (сопротивление уменьшается).

На фиг.2 представлены зависимости относительного изменения сопротивления (R/R0) полупроводникового резистора 3 от давления (Р): кривая 1 - (SiO2)50%(SnO2)50%, кривая 2 - (SiO2)40%(SnO2)50%(In2O3)10%. видно, что в случае сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10% (кривая 2) относительное изменение сопротивления при том же давлении значительно больше, чем в случае сетчатой наноструктуры (SiO2)50%(SnO2)50% (кривая 1). Соответственно, чувствительность датчика вакуума с тонкопленочным полупроводниковым резистором в виде сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10% существенно выше, чем (SiO2)50%(SnO2)50%.

На фиг.3 представлена морфология поверхности тонкопленочного полупроводникового резистора в виде сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10%, полученная с помощью атомно-силового микроскопа (АСМ). Сетчатая наноструктура (SiO2)40%(SnO2)50%(In2O3)10%, представляет собой зерна диоксида олова (SnO2) с примесью оксида индия (In2O3), заключенные в диэлектрическую матрицу диоксида кремния (SiO2), размер которых соизмерим с размерами области пространственного заряда (длинной экранирования Дебая). Введение каталитической добавки оксида индия (In2O3) в двухкомпонентную систему на основе диоксидов олова и кремния (SiO2-SnO2) приводит к росту концентрации наноразмерных пор и повышению степени модуляции размеров проводящих каналов из-за возрастания влияния дебаевских областей обеднения носителями заряда. Это приводит к большему изменению сопротивления тонкопленочного полупроводникового резистора при понижении давления.

Дополнительное приращение к изменению сопротивления тонкопленочного полупроводникового резистора 3 (фиг.1), повышающее чувствительность в диапазоне низкого вакуума, подтверждается результатами экспериментальных исследований сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10%, которые представлены на фиг.2.

Благодаря отличительным признакам изобретения повышается чувствительность.

В результате испытаний экспериментальных образцов датчиков вакуума, изготовленных в соответствии с формулой изобретения, установлено, что наноструктурированные чувствительные элементы с сетчатой нано-структурой (SiO2)40%(SnO2)50%(In2O3)10% позволяют значительно повысить чувствительность.

Предлагаемый способ изготовления наноструктурированного чувствительного элемента и датчика вакуума выгодно отличаются от известных и могут найти широкое применение.

Источники информации, принятые во внимание при экспертизе

1. А.с. СССР №1285327, МПК G01L 21/12 Теплоэлектрический вакуумметр / Тихонов А.И., Васильев В.А., Тельпов С.Е. // Бюл. №3 от 23.01.1987 г.

2. А.с. СССР №1420407, МПК G01L 21/12 Теплоэлектрический преобразователь давления / Васильев В.А., Тельпов С.Е., Тихонов А.И., Горбачева А.В. // Бюл. №32 от 30.08.1988 г.

3. Булыга А.В. Полупроводниковые теплоэлектрические вакуумметры. (Библиотека по автоматике, выпуск 177). - М. - Л.: Изд-во Энергия, 1966. - С.115-116.

4. Патент РФ №2398195, МПК G01L 9/04, В82В 3/00 Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на его основе / Белозубов Е.М., Васильев В.А., Чернов П.С. // Бюл. №24 от 27.08.2010 г.

5. Патент РФ №2430342, МПК G01L 9/00 Полупроводниковый датчик давления с частотным выходным сигналом / Васильев В.А., Громков Н.В., Москалев С.А. // Бюл. №27 от 27.09.2011 г.

6. Патент РФ №2485465, МПК G01L 21/12, В82В 3/00, B82Y 15/00 Способ изготовления датчика вакуума с наноструктурой и датчик вакуума на его основе / Аверин И.А., Васильев В.А., Карманов А.А., Печерская P.M., Пронин И.А. // Бюл. №17 от 20.06.2013 г.

1. Способ изготовления наноструктурированного чувствительного элемента датчика вакуума, заключающийся в том, что образуют гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор в виде сетчатой наноструктуры путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан (ТЭОС) и этиловый спирт, смесь выдерживают около 30 минут, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl), двухводный хлорид олова (SnCl2·2H2O) и перемешивают около 60 минут, после чего его закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников, отличающийся тем, что сетчатую наноструктуру полупроводникового резистора формируют в виде (SiO2)40%(SnO2)50%(In2O3)10%, где 40% - массовая доля диоксида кремния (SiO2), 50% - массовая доля диоксида олова (SnO2), 10% - массовая доля оксида индия (In2O3), а на втором этапе дополнительно вводят 4,5-водный нитрат индия (In(NO3)3·4,5H2O).

2. Способ изготовления датчика вакуума с наноструктурой по п.1, отличающийся тем, что на втором этапе в полученный раствор до перемешивания вводят 4,5-водный нитрат индия (In(NO3)3·4,5H2O) в соотношении 1:0,08, а двухводный хлорид олова (SnCl2·2H2O) в соотношении 1:0,320, при этом дистиллированную воду вводят в соотношении 1:0,323, а соляную кислоту (HCl) в соотношении 1:0,05, где за единицу принят объем ТЭОС.

3. Датчик вакуума с наноструктурой, изготовленный по пп.1 и 2, содержащий корпус, установленную в нем гетерогенную структуру из тонких пленок материалов, образованную на подложке из полупроводника, тонкопленочный полупроводниковый резистор в виде сетчатой наноструктуры и контактные площадки к нему, сформированные в гетерогенной структуре, выводы корпуса и контактные проводники, соединяющие контактные площадки с выводами корпуса, отличающийся тем, что сетчатая наноструктура полупроводникового резистора сформирована в виде (SiO2)40%(SnO2)50%(In2O3)10%, где 40% - массовая доля диоксида кремния (SiO2), 50% - массовая доля диоксида олова (SnO2), 10% - массовая доля оксида индия (In2O3).



 

Похожие патенты:

Изобретение относится к измерительной технике. Способ изготовления датчика вакуума с наноструктурой повышенной чувствительности заключается в том, что образуют гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников.

Изобретение относится к измерительной технике. В способе изготовления датчика вакуума с наноструктурой получают гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников.

Изобретение относится к датчикам вакуума для измерения давления разреженного газа в вакуумных установках различного назначения. .

Изобретение относится к измерительной технике и может быть использовано в устройствах измерения давления газов в широком диапазоне давлений. .

Изобретение относится к измерительной технике, в частности, к теплоэлектрическим датчикам давления, и может быть использовано для измерения малого избыточного давления с повышенной точностью.

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике и может быть использовано для измерения вакуума. .
Изобретение относится к медицине, в частности к способу доставки активных субстанций (АС) через эпидермальный барьер. Заявленный способ включает использование трансдермального пластыря матричного типа, содержащего подложку, защитную ленту и полимерный слой, и характеризуется тем, что в полимерный слой трансдермального пластыря вносят 10% ниосом на основе ПЭГ-12 диметикона и затем полимерный слой наносят на подложку.

Изобретение относится к медицине и косметологии и может быть использовано для эффективной трансдермальной доставки широкого спектра активных субстанций (АС). Заявлен способ трансдермальной доставки АС в составе ниосом, полученных из ПЭГ-12 диметикона, характеризующийся тем, что АС включаются в ниосомы при концентрации 10% путем гомогенизации на АПВ гомогенизаторе геля, содержащего 10% ниосом.

Изобретение относится к области химико-фармацевтической промышленности, в частности к созданию аэрозольной композиции, используемой для введения лекарственных средств с помощью ингаляции.

Изобретение относится к области химико-фармацевтической промышленности, в частности к созданию аэрозольной композиции, используемой для введения лекарственных средств с помощью ингаляции.
Изобретение может использоваться для получения биологических радиоактивных меток. Способ получения меченных тритием наноалмазов методом термической активации трития включает приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от 0,15 до 0,6 мг, равномерное нанесение полученной суспензии на стенки сосуда, содержащего установленную с возможностью подключения электрического тока вольфрамовую нить для активации трития, с последующей лиофилизацией и удалением воздуха.

Изобретение относится к области фармакологии, биофармации и фармацевтики и касается способа определения биологической неэквивалентности образцов наноалмазов путем сравнительного определения влияния образцов наноалмаза на мембранный потенциал митохондрий животных.

Изобретение относится к коллоидной химии и может быть использовано в люминесцентных метках, а также при изготовлении материалов для лазеров, светодиодов, солнечных батарей, фотокатализаторов.
Изобретение относится к получению материала для электронной промышленности, в частности, для литий-ионных аккумуляторов. Способ получения нанопорошков композита на основе титаната лития Li4Ti5O12/C включает смешивание диоксида титана, карбоната лития и крахмала и термическую обработку полученной смеси до получения материала с 100% структурой шпинели.

Изобретение может быть использовано при изготовлении изделий, работающих в агрессивных средах и повышенной температуре, таких как мембраны, фильтры, покрытия. Материал на основе углеродных нанотрубок получают газофазным осаждением в вертикальном CVD-реакторе 1, который предварительно вакуумируют, продувают аргоном в течение 10-12 мин и нагревают до 900-1150 °С.
Изобретение относится к области нанотехнологии сенсорных материалов и может быть использовано для создания полупроводниковых газовых сенсоров, селективных к содержанию в воздухе сероводорода и его производных.

Изобретение относится к получению нанопорошков дисилицида церия и может быть использовано для изготовления токопроводящих и резистивных элементов интегральных схем.
Наверх