Способ дистанционного контроля параметров сердечной деятельности организма



Способ дистанционного контроля параметров сердечной деятельности организма
Способ дистанционного контроля параметров сердечной деятельности организма

 


Владельцы патента RU 2559940:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный университет имени Н.Г. Чернышевского" (RU)

Изобретение относится к области медицинской техники и может быть использовано для дистанционного контроля параметров сердечной деятельности организма. Способ заключается в излучении электромагнитного СВЧ-сигнала, приеме интерференционного сигнала, являющегося суммой падающего и отраженного электромагнитного излучения, определении параметров жизнедеятельности организма. При этом излучаемый электромагнитный СВЧ-сигнал направляют на область расположения плечевой артерии, интерференционный сигнал представляют в виде U(t)=cos(θ+(4π/λ)f(t)), где t - время, θ - начальная фаза сигнала, λ - длина волны излучаемого электромагнитного СВЧ-сигнала, f(t) - функция движения плечевой артерии, после чего вводят функцию S(t) - такую, что ее спектр с точностью до постоянного множителя соответствует спектру функции движения плечевой артерии: S ( t ) = ( d U / d t ) / 1 U 2 ( t ) = ( 4 π / λ ) ( 1 / a ) C ( a , b ) ψ 2 ( ( t b ) / a ) ( d a d b / a 2 ) , где C(a,b) - коэффициенты вейвлет-разложения функции f(t) по базису ψ1, определяемые с помощью соотношения: C ( a , b ) = ( 1 / a ) S ( t ) ψ 2 ( ( t b ) / a ) d t , a - коэффициент масштабирования, b - коэффициент сдвига, ψ2 - производная от базисной вейвлет-функции ψ1, затем восстанавливают функцию движения плечевой артерии: f ( t ) = ( 1 / a ) C ( a , b ) ψ 1 ( ( t b ) / a ) ( d a d b / a 2 ) , и по функции движения плечевой артерии рассчитывают параметры вариабельности сердечного ритма: Мо - наиболее часто встречаемое значение R-R-интервалов, АМо - доля кардиоинтервалов соответствующих значению Мо, dx - разность между длительностью наибольшего и наименьшего кардиоинтервалов, ИН=АМо/(2∗Мо∗dx) - индекс напряжения регуляторный систем, ИВР=Амо/dx - индекс вегетативного равновесия, ВПР=1/(Мо∗dx) - вегетативный показатель ритма, ПАПР=Амо/Мо - показатель адекватности процессов регуляции. Использование изобретения позволяет снизить погрешности измерения за счет исключения из регистрируемого сигнала влияния дыхания. 2 ил., 1 табл.

 

Изобретение относится к области медицинской техники и может быть использовано для дистанционного контроля параметров сердечной деятельности организма.

Известен способ исследования вегетативной дисфункции путем проведения кардиоинтервалографии и определения величины индекса напряжения регуляторных систем (ИН) при проведении пробы положения в виде максимального сгибания вперед головы и удержания ее в таком положении в течение 5 мин (Патент РФ №2237431, МПК А61В 5/0452).

Недостатком данного способа является контактность используемого метода электрокардиографии, длительность подготовки, недостаточное количество полезной информации на выходе.

Известен способ диагностики вегетативной дисфункции, включающий проведение кардиоинтервалографии путем регистрации у больного ЭКГ во II стандартном отведении с последующей математической обработкой ЭКГ, включающей измерение R-R-интервалов и расчет величины индекса напряжения регуляторных систем (ИН) в условных единицах (у.е.) по формуле Баевского с последующим проведением по величине ИН дифференциальной диагностики ваготонии, эйтонии и симпатикотонии. ЭКГ регистрируют трижды с интервалами 5 мин и каждый раз рассчитывают ИН (Патент РФ №2242923, МПК А61В 5/0452).

Недостатком данного способа является контактность используемого метода электрокардиографии, длительность подготовки, малое количество полезной информации на выходе.

Также известен способ диагностирования сердечно-сосудистой системы, в котором регистрируют кардиоинтервалы пациента, измеряют их длительность, образуют динамический ряд кардиоинтервалов, исключая из ряда экстрасистолы, формируют автокорреляционную функцию упомянутого ряда, осуществляют преобразование автокорреляционной функции в автокорреляционную матрицу и судят о состоянии сердечно-сосудистой системы пациента. Регистрацию кардиоинтервалов осуществляют путем снятия плетизмограммы пациента (Патент РФ №2442529, МПК А61В 5/0295, А61В 5/0452).

Недостатками вышеизложенного способа являются контактность используемого метода плетизмограммы, недостаточно выведенных коэффициентов для оценки работы сердечно-сосудистой системы.

Наиболее близким является способ дистанционного контроля физиологических параметров жизнедеятельности организма, включающий излучение электромагнитного сигнала, прием отраженного сигнала, перед определением параметров отраженный сигнал когерентно складывают с излучаемым электромагнитным сигналом, выделяют основную гармонику в спектре суммарного сигнала, по которой определяют частоту движения грудной клетки организма, а по максимальной величине амплитуд гармоник, входящих в спектр, определяют амплитуду движений грудной клетки организма вследствие сердцебиения и дыхания, по полученным параметрам судят о соответствии норме физиологических параметров жизнедеятельности организма (Патент РФ №2295911, МПК А61В 5/05).

Однако в данном способе вследствие невозможности задержки дыхания на большой промежуток времени не производится оценка параметров сердечного ритма ввиду трудностей, связанных с необходимостью исключить дыхательные движения, в частности индексов вариабельности сердечного ритма Баевского, для точного расчета которых требуется не менее 100 кардиоинтервалов; не производится восстановление формы сердечных сокращений.

Задача настоящего способа заключается в бесконтактном определении параметров вариабельности сердечного ритма, фиксации формы сердечных сокращений большого количества кардиоинтервалов.

Технический результат, достигаемый заявляемым решением, заключается в снижении погрешности измерения за счет исключения из регистрируемого сигнала влияния дыхания.

Поставленная задача достигается тем, что способ дистанционного контроля параметров сердечной деятельности организма включает излучение электромагнитного СВЧ-сигнала, прием интерференционного сигнала, являющегося суммой падающего и отраженного электромагнитного излучения, определение параметров жизнедеятельности организма, согласно решению излучаемый электромагнитный СВЧ-сигнал направляют на область расположения плечевой артерии, интерференционный сигнал представляют в виде U(t)=cos(θ+(4π/λ)f(t)), где t - время, θ - начальная фаза сигнала, λ - длина волны излучаемого электромагнитного СВЧ-сигнала, f(t) - функция движения плечевой артерии; вводят функцию S(t) такую, что ее спектр с точностью до постоянного множителя соответствует спектру функции движения плечевой артерии:

S ( t ) = ( d U / d t ) / 1 U 2 ( t ) = ( 4 π / λ ) ( 1 / a ) C ( a , b ) ψ 2 ( ( t b ) / a ) ( d a d b / a 2 ) ,

где С(а,b) - коэффициенты вейвлет-разложения функции f(t) по базису ψ1, определяемые с помощью соотношения:

C ( a , b ) = ( 1 / a ) S ( t ) ψ 2 ( ( t b ) / a ) d t ;

a - коэффициент масштабирования; b - коэффициент сдвига; ψ2 - производная от базисной вейвлет-функции ψ1; восстанавливают функцию движения плечевой артерии:

f ( t ) = ( 1 / a ) C ( a , b ) ψ 1 ( ( t b ) / a ) ( d a d b / a 2 ) ;

по функции движения плечевой артерии рассчитывают параметры вариабельности сердечного ритма: Мо - наиболее часто встречаемое значение R-R-интервалов; АМо - доля кардиоинтервалов, соответствующих значению Мо; dx - разность между длительностью наибольшего и наименьшего кардиоинтервалов; ИН=АМо/(2∗Мо∗dx) - индекс напряжения регуляторный систем; ИВР=Амо/dx - индекс вегетативного равновесия; ВПР=1/(Мо∗dx) - вегетативный показатель ритма; ПАПР=Амо/Мо - показатель адекватности процессов регуляции.

Предлагаемый способ поясняется чертежами, где на фиг.1 приведена блок-схема радиоволнового автодина на диоде Ганна, позволяющего реализовать заявляемый способ. На фиг.2 представлено сравнение нормированной функции движения плечевой артерии f(t) и ЭКГ со II отведения.

Позициями на чертеже обозначены:

1 - СВЧ-датчик;

2 - генератор;

3 - приемник;

4 - источник питания;

5 - аналого-цифровой преобразователь;

6 - компьютер;

7 - рупорная антенна;

8 - обследуемый организм.

Способ заключается в следующем.

Предлагаемый способ дистанционного контроля параметров сердечной деятельности организма включает излучение электромагнитного сигнала, прием отраженного сигнала, который когерентно складывается с излучаемым электромагнитным сигналом, восстановление формы движения участка тела человека, где ближе всего к поверхности расположена плечевая артерия, связанного с сердцебиением, определение параметров сердечной деятельности организма путем расчета индексов вариабельности сердечного ритма по Баевскому, по которым судят о состоянии сердечной деятельности человека.

Излучение электромагнитного сигнала с помощью СВЧ-генератора 2 (фиг.1) через рупорную антенну 7 направляют на область локтя человека 8. Отраженное излучение принимают через ту же рупорную антенну и когерентно складывают с излученным электромагнитным сигналом. Суммарный интерференционный сигнал выбирают в качестве информативного сигнала. Результат сложения - информативный сигнал - выделяют с помощью детектора 3 и подают на аналого-цифровой преобразователь 5 для последующей его цифровой обработки на компьютере 6. Полученный сигнал очищают от шумов и восстанавливают содержащуюся в нем форму пульсовой волны.

Теоретическое обоснование методики измерений.

В основу метода контроля периодических движений области руки, где ближе всего к поверхности расположена плечевая артерия, вследствие сердечных сокращений с помощью автодина на диоде Ганна положена зависимость изменения режима его работы под действием СВЧ-сигнала, отраженного от области руки. Для направленного зондирования живого объекта СВЧ-датчик снабжался рупорной антенной. Конструктивно-измерительный прибор состоит из выносного датчика с рупором и цифрового блока индикации, соединенных между собой кабелем. Измерительный датчик представляет собой волноводную секцию (сечение канала 23÷10 мм2). В качестве активного элемента использовался диод типа 3А723, помещенный в зазор стержневого держателя. Частота и мощность СВЧ-генератора могла перестраиваться в результате перемещения поршня и изменения питающего напряжения на диоде Ганна. В блоке индикации измерительного прибора проводится обработка сигнала СВЧ-генератора и отображение информации в аналоговой или цифровой форме. Предусмотрена возможность подключения к блоку индикации осциллографического индикатора, анализатора спектра сигнала механических колебаний, и имеется возможность сопряжения прибора с микро-ЭВМ. Блок схема радиоволнового автодина на диоде Ганна представлена на фиг.1.

Для восстановления формы сложного непериодического движения отражателя использовалась методика, основанная на одновременном измерении интерференционного сигнала и его производной.

Переменная составляющая интерференционного сигнала имеет вид:

I ( t ) = A cos ( θ + 4 π λ f ( t ) ) ,

где A - амплитудный коэффициент, определяемый амплитудами токов, t - время, θ - начальная фаза сигнала, λ - длина волны зондирующего излучения, f(t) - функция, характеризующая продольные движения объекта.

Далее мы будем рассматривать нормированную переменную составляющую интерференционного сигнала:

U ( t ) = I ( t ) A = cos ( θ + 4 π λ f ( t ) ) .

Функция, характеризующая продольные движения объекта, может быть представлена в виде:

f ( t ) = K ψ 1 C ( a , b ) 1 a ψ 1 ( t b a ) d a d b a 2 , ( 1 )

K ψ 1 = 2 π | ψ f ( ω ) | 2 | ω | d ω .

Здесь ψ1 - базисная вейвлет-функция, C(a,b) - коэффициенты вейвлет-разложения функции f(t) по базису ψ1, определяемые с помощью соотношения:

C ( a , b ) = S ( t ) 1 a ψ 0 ( t b a ) d t ,

K ψ 1 - постоянная величина, определяемая базисной вейвлет-функцией, ψf(ω) - Фурье-образ функции ψ1, a - коэффициент масштаба, b - коэффициент смещения по времени, ω - переменная интегрирования. Для того чтобы равенство (1) выполнялось, необходимо, чтобы функция ψ1 обладала свойствами вейвлета.

Функция S(t) выбрана таким образом, чтобы ее спектр с точностью до постоянного множителя соответствовал спектру восстанавливаемого сигнала:

S ( t ) = d U / d t 1 U 2 ( t ) . ( 2 )

Запишем ее с учетом выражения для нормированной составляющей интерференционного сигнала:

S ( t ) = 4 π λ K ψ 1 C ( a , b ) 1 a ψ 2 ( t b a ) d a d b a 2 , ( 3 )

где ψ2 - производная от базисной вейвлет-функции ψ1.

Имеет смысл в дальнейшем рассматривать только такие вейвлет-функции ψ1(t), у которых существует производная, в свою очередь являющаяся вейвлетом. В данной работе использовались вейвлет-функция МНАТ, имеющая вид: ψ 2 ( t ) = t exp ( t 2 2 ) , и ее производная ψ 2 ( t ) = ( 1 t 2 ) exp ( t 2 2 ) .

Сравнивая интегральные представления функций f(t) и S(t) (выражения (1) и (3) соответственно), можно увидеть, что они отличаются базисной вейвлет-функцией и постоянной величиной 4 π λ . Построив на основе интерференционного сигнала (2) функцию S(t), разложим ее по вейвлет-базису ψ2 для получения коэффициентов вейвлет-разложения С(а,b):

C ( a , b ) = λ 4 π S ( t ) 1 a ψ 2 ( t b a ) d t .

Затем, используя полученные вейвлет-коэффициенты, выполним обратное преобразование, используя базис ψ1:

f ( t ) = K ψ 1 1 C ( a , b ) 1 a ψ 1 ( t b a ) d a d b a 2 .

Для оценки адекватности данной методики одновременно с измерениями формы движения области руки радиоволновым методом производилась фиксация электрокардиограммы испытуемого.

Рассчитывались параметры вариабельности сердечного ритма: Мо - наиболее часто встречаемое значение R-R-интервалов; АМо - доля кардиоинтервалов, соответствующих значению Мо; dx - разность между длительностью наибольшего и наименьшего кардиоинтервалов; И Н = А М о ( 2 М о d x ) - индекс напряжения регуляторный систем; И В Р = A M o d x - индекс вегетативного равновесия; В П Р = 1 ( M o d x ) - вегетативный показатель ритма; П А П Р = A M o M o - показатель адекватности процессов регуляции.

Результаты, полученные по вышеизложенной методике, а именно значения вариабельности сердечного ритма, а также аналогичные значения, рассчитанные по электрокардиограмме, представлены в таблице, а также рассчитаны относительные отклонения этих параметров. Таблица иллюстрирует соответствие результатов, полученных предложенным бесконтактным способом, с результатами, рассчитанными по ЭКГ, полученными контактным способом.

Таблица
Индексы вариабельности сердечного ритма, рассчитанные по ЭКГ и восстановленному сигналу СВЧ
Индекс Мо, с АМо, % dX, с ИН, у.е. ИВР, у.е. ВПР, у.е. ПАПР, у.е.
Наиболее часто встречаемое значение кардиоинтервалов Доля кардиоинтервалов, соотвествующих значению Мо, в % к объему выборки Разность между длительностью наибольшего и наименьшего кардио
интервалов
Индекс напряженности регуляторных систем Индекс вегетативного равновесия Вегетативный показатель ритма Показатель адекватности процессов регуляции
Испытуемый 1 до нагрузки Восстановленный сигнал 0,8 40 0,3 83,3 133,3 4,2 50
ЭКГ 0,83 37,3 0,26 84,3 140 4,52 44,9
Отклонение, % 3,61 7,24 15,38 1,19 4,79 7,08 11,36
Испытуемый 1 после нагрузки Восстановленный сигнал 0,75 47,6 0,25 126,9 190,4 5,3 63,5
ЭКГ 0,742 45,9 0,236 133 194 5,78 62,8
Отклонение, % 1,08 3,70 5,93 4,59 1,86 8,30 1,11
Испытуемый 2 до нагрузки Восстановленный сигнал 1,1 21,5 0,4 24,4 53,8 2,3 19,5
ЭКГ 1,04 20,8 0,38 26,6 55,6 2,56 20
Отклонение, % 5,77 3,37 5,26 8,27 3,24 10,16 2,50
Испытуемый 2 после нагрузки Восстановленный сигнал 1 24,2 0,4 30,2 60,5 2,5 24,2
ЭКГ 1,05 21,5 0,39 26,4 55,3 2,46 20,5
Отклонение, % 4,76 12,56 2,56 14,39 9,40 1,63 18,05

Способ дистанционного контроля параметров сердечной деятельности организма, включающий излучение электромагнитного СВЧ-сигнала, прием интерференционного сигнала, являющегося суммой падающего и отраженного электромагнитного излучения, определение параметров жизнедеятельности организма, отличающийся тем, что излучаемый электромагнитный СВЧ-сигнал направляют на область расположения плечевой артерии, интерференционный сигнал представляют в виде U(t)=cos(θ+(4π/λ)f(t)), где t - время, θ - начальная фаза сигнала, λ - длина волны излучаемого электромагнитного СВЧ-сигнала, f(t) - функция движения плечевой артерии; вводят функцию S(t) такую, что ее спектр с точностью до постоянного множителя соответствует спектру функции движения плечевой артерии:
S ( t ) = ( d U / d t ) / 1 U 2 ( t ) = ( 4 π / λ ) ( 1 / a ) C ( a , b ) ψ 2 ( ( t b ) / a ) ( d a d b / a 2 ) ,
где C(a,b) - коэффициенты вейвлет-разложения функции f(t) по базису ψ1, определяемые с помощью соотношения:
C ( a , b ) = ( 1 / a ) S ( t ) ψ 2 ( ( t b ) / a ) d t ;
a - коэффициент масштабирования; b - коэффициент сдвига; ψ2 - производная от базисной вейвлет-функции ψ1; восстанавливают функцию движения плечевой артерии:
f ( t ) = ( 1 / a ) C ( a , b ) ψ 1 ( ( t b ) / a ) ( d a d b / a 2 ) ;
по функции движения плечевой артерии рассчитывают параметры вариабельности сердечного ритма: Мо - наиболее часто встречаемое значение R-R-интервалов; АМо - доля кардиоинтервалов, соответствующих значению Мо, dx - разность между длительностью наибольшего и наименьшего кардиоинтервалов; ИН=АМо/(2∗Мо∗dx) - индекс напряжения регуляторный систем; ИВР=Амо/dx - индекс вегетативного равновесия; ВПР=1/(Мо∗dx) - вегетативный показатель ритма; ПАПР=Амо/Мо - показатель адекватности процессов регуляции.



 

Похожие патенты:
Изобретение относится к медицине, реаниматологии и может быть использовано при оживлении пациентов, находящихся в состоянии клинической смерти. Способ реанимации включает компрессию грудной клетки, искусственную вентиляцию легких, введение лекарственных средств и проведение пульсоксиметрического мониторинга.
Изобретение относится к медицине, а именно к физиологии. Одновременно измеряют частоту сердечных сокращений, систолическое артериальное давление и диастолическое артериальное давление, вычисляют: индекс минутного объема крови, период сердечного цикла, период изгнания и нормированный показатель частоты сердечных сокращений.
Изобретение относится к медицине, а именно к физиологии. Одновременно измеряют частоту сердечных сокращений, систолическое артериальное давление и диастолическое артериальное давление, вычисляют: индекс минутного объема крови, период сердечного цикла, период изгнания и нормированный показатель частоты сердечных сокращений.

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для диагностики ранних стадий микроангиопатии у больных сахарным диабетом. Для этого проводят капилляроскопию в покое с последующей оценкой структурных изменений состояния капилляров.
Изобретение относится к медицине, в частности к кардиологии и пульмонологии, и может быть использовано при выборе тактики лечения у больных с идиопатической легочной гипертензией (ИЛГ).

Группа изобретений относится к медицине и может быть использована для определения и коррекции функционального состояния больного гипертонической болезнью. Проводят оценку состояния больного гипертонической болезнью по степени отличия показателей текущего состояния от индивидуальных показателей.

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для вторичной профилактики глоссодинии. В качестве физиотерапевтического воздействия осуществляют динамическую электронейростимуляцию (ДЭНС).
Изобретение относится к медицине, диагностике, может быть использовано для комплексной скрининг-оценки состояния здоровья пациентов. Аппаратно-программный комплекс оценки функциональных резервов организма включает хотя бы одно терминальное устройство (ТУ) пациента - компьютер с загруженным программным приложением для психологического тестирования, хранилищем данных с базами данных (БД) пациентов, их антропометрических показателей, результатов выполненных тестов, БД тестов, БД текстовых, графических и звуковых объектов, используемых в тестах.

Изобретение относится к ветеринарии и может быть использовано для прогнозирования течения бронхита у телят. Для этого определяют температуру тела, частоту сердечных сокращений (ЧСС) и частоту дыхательных движений (ЧДД) в минуту.

Изобретение относится к ветеринарии и может быть использовано для прогнозирования течения бронхита у телят. Для этого определяют температуру тела, частоту сердечных сокращений (ЧСС) и частоту дыхательных движений (ЧДД) в минуту.
Изобретение относится к медицине, в частности к области морской медицины, может быть использовано для определения степени индивидуальной устойчивости к декомпрессионной болезни (ДБ) женщин в возрасте 50-60 лет. Осуществляют погружение в барокамере на глубину 30 метров, нахождение на этой глубине в течение 1 часа и декомпрессию в течение 63 минут. За 30 минут до погружения определяют простую зрительно-моторную реакцию (ПЗМРфон). Через 30 минут после погружения в барокамере на глубину 30 метров и нахождения на этой глубине в течение 1 часа и декомпрессии в течение 63 минут определяют пульсовое артериальное давление (ПАДпс) и критическую частоту слияния световых мельканий (КЧСМпс). Определяют индекс устойчивости к ДБ женщин в возрасте 50-60 лет (ИУДБЖ50-60) по формуле: ИУДБЖ50-60=4,325+0,012×ПАДпс+0,002×ПЗМРфон-0,109×КЧСМпс где: ПАДпс - пульсовое артериальное давление, измеренное после погружения, мм. рт. ст.; ПЗМРфон - простая зрительно-моторная реакция, измеренная до погружения, мс; КЧСМпс - критическая частота слияния световых мельканий, измеренная после погружения, мс. При значении индекса до 0,92 включительно у женщины определяют высокую степень устойчивости к ДБ. Более 0,92, но менее 2,75 - среднюю степень устойчивости к ДБ. 2,75 и более - низкую степень устойчивости к ДБ. Способ позволяет повысить точность определения устойчивости к ДБ за счет дифференцированной оценки показателя в зависимости от возраста женщины.
Изобретение относится к медицине, а именно к области кардиологии. Определяют уровень промозгового натрийуретического пептида в плазме. Выполняют суточное мониторирование артериального давления, на основании которого определяют среднесуточные значения диастолического артериального давления. Рассчитывают суточный индекс систолического артериального давления, индекс площади систолического артериального давления; затем рассчитывают величину диастолического миокардиального стресса (МСдиаст) по формуле. При полученном значении более 140 диагностируют увеличение МСдиаст и назначают или корригируют гипотензивную терапию. При значении менее или при равном 140 считают, что диастолический миокардиальный стресс не повышенный, коррекция гипотензивной терапии не требуется. Способ позволяет осуществить раннюю диагностику латентных нарушений диастолической функции левого желудочка за счет выявления повышения диастолического миокардиального стресса. 2 пр.

Изобретение относится к области медицины, а именно к кардиологии. Осуществляют выбор точек, между которыми необходимо определить скорость пульсовой волны. Определяют форму движения тканей в выбранных точках путем излучения электромагнитного сигнала, приема отраженного от точки сигнала, когерентного сложения отраженного сигнала с излучаемым электромагнитным сигналом и восстановления формы движения тканей в выбранных точках по суммарному сигналу. Причем в случае, если амплитуда движения в точке менее 50 мкм, используют лазерное излучение. Если амплитуда движения в точке более 50 мкм, используют СВЧ-излучение. Определяют временную задержку (Δt). На основании Δt и расстоянии между выбранными точками определяют скорость пульсовой волны. Способ позволяет повысить точность измерения за счет использования двух видов излучения. 5 ил.

Группа изобретений относится к медицине. Манжета устройства измерения для оценки кровяного давления по первому варианту содержит камеру текучей среды для приложения давления к телу, внешний чехол, первую застежку для крепления к поверхности и вторую застежку для крепления к поверхности. Внешний чехол имеет первую основную поверхность и вторую основную поверхность, который вмещает камеру текучей среды в направлении к одному концевому участку. Первая застежка для крепления к поверхности обеспечена в направлении к указанному одному концевому участку на первой основной поверхности. Вторая застежка для крепления к поверхности обеспечена в направлении к другому концевому участку на первой основной поверхности или на второй основной поверхности. Внешний чехол обернут вокруг тела в форме кольца. Первая застежка для крепления к поверхности и вторая застежка для крепления к поверхности удерживают обернутый внешний чехол на теле в закрепленном состоянии. Внешний чехол включает в себя зону, в которой обеспечена первая застежка для крепления к поверхности, и зону, в которой обеспечена вторая застежка для крепления к поверхности. Ширина (W2) внешнего чехла в зоне (R2) по меньшей мере в некоторой части больше, чем ширина (W1) внешнего чехла в зоне (R1). Ширина (L2) второй застежки для крепления к поверхности в зоне (R2) по меньшей мере в некоторой части больше, чем ширина (L1) первой застежки для крепления к поверхности в зоне (R1). Камера текучей среды обеспечена в направлении к указанному одному концевому участку, который направлен к тому же концевому участку, где обеспечена первая застежка для крепления к поверхности. Устройство измерения для оценки кровяного давления содержит вышеуказанную манжету устройства измерения для оценки кровяного давления, механизм накачивания/выпуска, который накачивает/спускает камеру текучей среды, и блок получения для оценки кровяного давления, который получает информацию кровяного давления. Манжета устройства измерения для оценки кровяного давления по второму варианту содержит камеру текучей среды для приложения давления к телу, первый внешний чехол, который вмещает камеру текучей среды, первый крепежный элемент, обеспеченный на первом внешнем чехле, второй внешний чехол, второй крепежный элемент, обеспеченный на втором внешнем чехле, и соединительный элемент, который соединяет, с возможностью поворота, другой концевой участок первого внешнего чехла с одним концевым участком второго внешнего чехла. Первый внешний чехол и второй внешний чехол обернуты в форме кольца вокруг тела, оставаясь соединенными между собой соединительным элементом. Первый крепежный элемент и второй крепежный элемент удерживают обернутые первый внешний чехол и второй внешний чехол на теле в закрепленном состоянии. Изобретения обеспечивают возможность уверенной подгонки манжеты к области измерения. 3 н. и 4 з.п. ф-лы, 17 ил.

Изобретение относится к медицине, функциональной диагностике внутренних болезней. Определяют показатели сердечно-сосудистой системы: скорость распространения пульсовой волны в аорте (СРПВ, м/с), центральное давление на аорте (ЦАД, мм рт.ст.), пульсовое давление (ПАД, мм рт.ст.), среднее давление (СрАД, мм рт.ст.) и индекс аугментации (ИА, %). Полученные результаты оценивают по центильным таблицам и относительно медианы показателей артериографии. При значении хотя бы одного из показателей СРПВ, ЦАД, ПАД и СрАД выше 90-го перцентиля и индекса аугментации ниже 10-го перцентиля оценивают как патологию. При значениях каждого из показателей СРПВ, ЦАД, ПАД и СрАД в диапазоне от медианы до 90-го перцентиля и ИА - от медианы до 10-го перцентиля оценивают как группу риска по развитию гемодинамических нарушений. Способ оценки позволяет выявить начало патологического процесса и наиболее объективно оценить состояние эндотелиальной функции и гемодинамические параметры у ребенка на доклинических этапах. 5 табл., 3 пр.

Изобретение относится к медицине и может быть использовано в кардиологии. Пациенту с медикаментозно-резистентной гипертонией проводят автоматическое измерение систолического АД и определяют β-адренореактивность эритроцитарных мембран. В тех случаях, когда систолическое АД равно или больше 170 мм рт. ст., а β-адренореактивность эритроцитарных мембран равна или выше 40 условных единиц считают показанным проведение радиочастотной симпатической денервации почечных артерий. При значениях систолического АД менее 170 мм рт.ст. и β-адренореактивности эритроцитарных мембран меньше 40 условных единиц считают, что проведение симпатической денервации почечных артерий не целесообразно. Способ позволяет осуществить отбор пациентов с медикаментозно-резистентной формой артериальной гипертензии, у которых проведение процедуры симпатической денервации почечных артерий позволит эффективно снизить артериальное давление. 2 пр., 1 табл.

Изобретение относится к области экспериментальной и клинической медицины и может быть использовано для прижизненной оценки микрогемолимфодинамики в экспериментальных исследованиях и клинической практике. Устройство для диагностики состояния микрогемолимфодинамики in vivo содержит датчик (4), который подключен к лазерному допплеровскому флоуметру (5), соединенному с компьютерной системой ЭВМ (6). Устройство имеет рабочую камеру (1) для исследуемого объекта (2). Датчик (4) расположен в фиксирующем зажиме (7). Зажим (7) соединен со стереотаксическим манипулятором (3) соединительным узлом (8). Соединительный узел (8) выполнен в виде парного шарового шарнира со стабилизирующим прижимным винтом (9). Применение изобретения обеспечит расширение области исследования микроциркуляции in vivo в любой области организма, включая интраоперационное исследование любых внутренних органов, высокую точность локализации, прицельность фиксации, максимальное количество степеней свободы при пространственной ориентировке датчика, существенное снижение (практически исключение) травматизации исследуемых тканей и искажения результатов исследования вследствие механического раздражения исследуемой области датчиком. 1 ил.

Изобретение относится к медицине, а именно к педиатрии и кардиологии, и может быть использовано для реабилитации школьников с синдромом вегетативной дистонии (СВД). У школьников предварительно выявляют риск развития СВД путем определения суммы баллов критериев вегетативных расстройств. Группу школьников, набравших суммарно от 1 до 25 баллов, включают в группу риска по развитию СВД. Указанную группу обследуют. Определяют показатели артериального давления, оценивают уровень физического развития и здоровья, симптомы астеновегетативной дисфункции и симптомы дисфункции сердечно-сосудистой системы. При сумме баллов от 1 до 20 у детей определяют слабовыраженные признаки СВД. Для коррекции данного состояния проводят реабилитационные мероприятия. При сумме баллов от 21 до 30 выявляют наличие выраженного характера СВД. При этом проводят реабилитационные мероприятия и физиотерапевтические процедуры. У учащихся, набравших более 30 баллов, определяют тяжелое течение СВД и направляют на амбулаторное лечение. Способ позволяет просто и доступно выявить на ранних стадиях развития СВД, устранить психологические причины и улучшить функциональные возможности кардиореспираторной системы школьников за счет комплексной оценки и выбора наиболее оптимальных показателей. 2 табл., 5 пр.

Изобретение относится к медицине, в частности к кардиохирургии. В послеоперационном периоде определяют ударный объем левого желудочка и индекс сократимости левого желудочка с помощью мониторной системы PiCCO plus. Затем сравнивают значение ударного объема левого желудочка, полученное в послеоперационном периоде, со значением ударного объема левого желудочка, полученным при эхокардиографическом исследовании в предоперационном периоде. Определяют коэффициент отношения ударных объемов (R) по математической формуле. Если значение индекса сократимости левого желудочка равно или больше 1200 мм рт.ст./сек, а значение коэффициента отношения ударных объемов больше или равно 0,7, то фракцию изгнания правого желудочка считают равной 40% и больше, что соответствует норме сократительной способности правого желудочка. При значении индекса сократимости левого желудочка меньше 1200 мм рт.ст./сек и значении коэффициента отношения ударных объемов меньше 0,7, фракцию изгнания правого желудочка считают ниже 40%, что является клинически значимым, при котором происходит развитие снижения сократительной способности правого желудочка. Способ позволяет повысить эффективность определения ударного объема за счет возможности проведения высокоточного непрерывного в течение длительного времени анализа сократительной способности правого желудочка и исключить послеоперационные осложнения. 2 табл., 2 пр.

Изобретение относится к области медицины, а именно к функциональной диагностике. Проводят пробы с локальной ишемией одной из рук. После чего определяют относительные изменения средних амплитуд пульсации кровенаполнения до и после пробы. Регуляцию капиллярного кровотока оценивают по изменению пульсаций кровенаполнения только на руке, не подвергаемой ишемии. Способ позволяет учесть нарушения микроциркуляции крови при проведении терапии заболеваний различной этиологии, выявить эндотелиальную дисфункцию коронарных артерий при ишемической болезни сердца, сократить количество измерений до 2-х и исключить необходимость учета исходных амплитуд пульса, что позволит уменьшить погрешность результатов исследования. 5 ил., 3 табл., 3 пр.
Наверх