Способ получения нанокапсул экстракта зеленого чая


 


Владельцы патента RU 2591800:

Кролевец Александр Александрович (RU)

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул экстракта зеленого чая. Способ характеризуется тем, что качестве оболочки используется каррагинан, а в качестве ядра используется экстракт зеленого чая, при осуществлении способа экстракт зеленого чая добавляют в суспензию каррагинана в бутаноле в присутствии поверхностно-активного вещества E472c, при этом соотношение ядро:оболочка при пересчете на сухое вещество составляет от 1:1 до 1:5, затем при перемешивании приливают серный эфир, полученную суспензию отфильтровывают и сушат при комнатной температуре. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул. 1 ил., 4 пр.

 

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. 2173140, МПК A61K 009/50, A61K 009/127 Российская Федерация, опубл. 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул экстракта зеленого чая, отличающийся тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - экстракт зеленого чая при получении нанокапсул методом осаждения нерастворителем с применением серного эфира в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием серного эфира в качестве осадителя, а также использование каррагинана в качестве оболочки частиц и экстракта зеленого чая - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул экстракта зеленого чая.

ПРИМЕР 1. Получение нанокапсул экстракта зеленого чая, соотношение ядро:оболочка 1:3

100 мг экстракта зеленого чая добавляют в суспензию каррагинана в бутаноле, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл серного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул экстракта зеленого чая, соотношение ядро:оболочка 1:1

100 мг экстракта зеленого чая добавляют в суспензию каррагинана в бутаноле, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/мин. Далее приливают 10 мл серного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул экстракта зеленого чая, соотношение ядро:оболочка 1:5

100 мг экстракта зеленого чая добавляют в суспензию каррагинана в бутаноле, содержащую указанного 500 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/мин. Далее приливают 7 мл серного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length : Auto, Min Expected Size : Avto длительность единичного измерения 215s, использование шприцевого насоса.

Способ получения нанокапсул экстракта зеленого чая, характеризующийся тем, что в качестве оболочки используется каррагинан, а в качестве ядра используется экстракт зеленого чая, при осуществлении способа экстракт зеленого чая добавляют в суспензию каррагинана в бутаноле в присутствии поверхностно-активного вещества E472c, при этом соотношение ядро:оболочка при пересчете на сухое вещество составляет от 1:1 до 1:5, затем при перемешивании приливают серный эфир, полученную суспензию отфильтровывают и сушат при комнатной температуре.



 

Похожие патенты:

Изобретение относится к способу получения нанокапсул адаптогенов. Указанный способ характеризуется тем, что экстракт элеутерококка или экстракт женьшеня добавляют в суспензию конжаковой камеди в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, затем приливают хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:3 или 5:1.

Изобретение относится к получению порошков, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Способ получения нанокристаллического сульфида свинца включает осаждение из водного раствора смеси неорганической соли свинца и сульфида натрия в присутствии цитрата натрия или динатриевой соли этилендиаминтетрауксусной кислоты (Трилон Б).
Группа изобретений относится к медицине, конкретно к пористому двухфазному материалу фосфата кальция/гидроксиапатита (ФК/ГАП) в качестве заменителя кости, содержащему спеченный ФК стержень и по меньшей мере один однородный и замкнутый эпитаксически выращенный слой нанокристаллического ГАП, нанесенный поверх спеченного ФК стержня, при этом эпитаксически выращенные нанокристаллы имеют такой же размер и структуру, как и костный минерал человека, т.е.
Изобретение относится к области получения композитных строительных материалов и может быть использовано в технологии изготовления древесно-минеральных плит, применяемых в качестве несущих, самонесущих стен и перегородок, конструкционных звуко- и теплоизоляционных плит и панелей.

Изобретение относится к кормопроизводству, в частности к способу снижения содержания свинца и кадмия в мясной массе домашней птицы. Способ включает непрерывную подачу корма, содержащего добавку вещества с частицами наноразмерного масштаба, начиная с двухнедельного возраста откармливаемой птицы до ее убоя.

Изобретение относится к кормопроизводству, в частности к способу снижения содержания кадмия и свинца в мясной массе домашней птицы. Способ включает непрерывную подачу корма, содержащего добавку вещества с частицами наноразмерного масштаба, начиная с двухнедельного возраста откармливаемой птицы до ее убоя.

Изобретение относится к области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из пектина.

Изобретение относится в области нанотехнологии и фармацевтики. Описан способ получения нанокапсул с настойкой эхинацеи в оболочке из альгината натрия.

Изобретение может быть использовано в химической, добывающей, пищевой отраслях промышленности и в медицине. Для получения сверхвысокомолекулярного полиэтилена (СВМПЭ), модифицированного наноразмерными частицами оксида титана, к исходному СВМПЭ при интенсивном перемешивании добавляют тетрахлорметан-бензольную смесь.
Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок.

Изобретение относится к водной дисперсии микрокапсул, пищевому продукту, содержащему указанную дисперсию. Микрокапсулы содержат, по меньшей мере, одно гидрофобное вещество и граничный слой вокруг упомянутого вещества.

Группа изобретений относится к химико-фармацевтической промышленности. Описано два вида многочастичных композиций для доставки плохо растворимых в среде желудочно-кишечного тракта лекарственных средств.

Группа изобретений относится к медицине и касается фармацевтической микросферной композиции, включающей ротиготин или его фармацевтически приемлемую соль; по крайней мере один полилактид-гликолид (ПЛГлА) с молекулярной массой 5000-100000 Да и полимеризационным соотношением лактид:гликолид от 95:5 до 5:95; и, по меньшей мере, одну жирную кислоту, имеющую 8-24 атомов углерода, где ротиготин или его фармацевтически приемлемая соль составляет 20-40%, ПЛГлА составляет 45-79%, и, по меньшей мере, одна жирная кислота составляет 1-15% по весу относительно общего веса композиции.

Изобретение относится к области высокомолекулярной химии и фармакологии и предназначено для использования в качестве пероральной формы терапевтического белка супероксиддисмутазы (СОД).

Изобретение относится к области фармацевтики. Описан способ получения микрокапсул лекарственных препаратов путем диспергирования капсулируемого вещества в растворе полимера и осаждения полимера на поверхности частиц дисперсии.
Изобретение относится к способу получения микрокапсул цефотаксима. Указанный способ характеризуется тем, что к 1% водному раствору интерферона человеческого лейкоцитарного в альфа- или бета-форме добавляют порошок цефотаксима и препарат Е472с в качестве поверхностно-активного вещества, полученную смесь перемешивают, после растворения компонентов реакционной смеси до образования прозрачного раствора медленно по каплям приливают бутанол в качестве первого осадителя, а затем ацетон - в качестве второго осадителя, полученную суспензию микрокапсул отфильтровывают, промывают ацетоном и сушат.

Изобретение относится к области нанотехнологии, фармакологии, фармацевтики и ветеринарной медицины. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.

Изобретение относится в области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.

Изобретение относится к области медицины, а именно к контрастным средствам, предназначенным для увеличения контрастности визуализируемого изображения при МРТ-диагностике печени и может быть использовано в экспериментальных и клинических исследованиях.

Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в оболочке натрий карбоксиметилцеллюлозе, характеризующемуся тем, что АСД 2 фракция диспергируют в суспензию натрий карбоксиметилцеллюлозы в бензоле в присутствии препарата Е472с, приливают ацетонитрил в качестве осадителя, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул адаптогенов. Указанный способ характеризуется тем, что экстракт элеутерококка или экстракт женьшеня добавляют в суспензию конжаковой камеди в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, затем приливают хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:3 или 5:1.
Наверх