Способ рентгенофлуоресцентного анализа проб с неопределяемыми компонентами наполнителя

Использование: для рентгенофлуоресцентного определения содержания компонентов в материалах сложного химического состава. Сущность: заключается в том, что формируют единую группу градуировочных образцов, охватывающих весь диапазон содержаний определяемых и мешающих элементов для анализируемых проб, измеряют интенсивности аналитических линий только определяемых i (Ii) элементов от анализируемых проб и градуировочных образцов, устанавливают градуировочную функцию в форме уравнения регрессии, затем, с целью компенсации неучтенного влияния неопределяемых компонентов наполнителя на Ii, зарегистрированные от пробы интенсивности сопоставляют с характеристиками одного градуировочного образца-соседа и находят содержание элемента i (Ci) по определенному выражению, выбирая состав образца-соседа наиболее близким к составу пробы. Технический результат: повышение экспрессности анализа и снятие ограничения по порядковому номеру определяемого элемента. 1 табл., 4 ил.

 

Изобретение относится к области аналитической химии и может быть использовано для рентгенофлуоресцентного определения содержания компонентов в материалах сложного химического состава (комплексные руды и продукты их переработки, воздух рабочей зоны).

Известен способ рентгеноспектрального флуоресцентного анализа вещества, заключающийся в облучении рентгеновским излучением пробы анализируемого вещества и градуировочных образцов (ГО), каждый из которых включает, по меньшей мере, один из определяемых компонентов регистрации интенсивностей характеристического рентгеновского излучения определяемых i (Ii) и всех основных мешающих j (Ij) элементов в пробе и градуировочных образцах и определении содержания Ci определяемых компонентов по уравнению множественной регрессии [Lucas-Tooth Н., Pyne С. The accurate determination of major constituents by X-ray fluorescent analysis in the presence of large interelement effects // Advances X-Ray Anal. - 1964. - Vol. 7. - P. 323-341]:

где а 0, а 1, αij - постоянные коэффициенты, оцениваемые методом наименьших квадратов (МНК) с помощью ГО.

Недостатком способа является необходимость регистрации интенсивностей характеристического рентгеновского излучения определяемых и всех основных мешающих элементов на этапах градуирования методики и анализа проб. Несмотря на повсеместное распространение способа в коммерческом программном обеспечении, при выполнении анализа материалов с неопределяемым составом наполнителя на спектрометрах последовательного действия он не позволяет экспрессно контролировать состав вещества.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ рентгенофлуоресцентного анализа элементного состава вещества [Патент РФ на изобретение №2240543, опубл. 20.04.2004], заключающийся в том, что после измерения Ii и Ij дополнительно измеряют интенсивность некогерентно рассеянного на пробе излучения анода рентгеновской трубки (nНК), или интенсивность рассеянного на пробе первичного тормозного (nS) излучения, используемые в качестве внутреннего стандарта в сложной системе регрессионных градуировочных характеристик. Этот прием позволяет практически полностью учесть влияние состава наполнителя пробы на интенсивность аналитической линии при определении элементов, тяжелее Fe.

Недостатками способа являются:

1. Необходимость регистрации дополнительных аналитических параметров nНК или nS, что ведет к увеличению времени экспонирования пробы (снижению экспрессности анализа).

2. Возможность количественного определения содержания элементов только с порядковым номером более 25 (Mn и более тяжелых элементов).

Технической задачей, решаемой предлагаемым изобретением, является устранение указанных недостатков: повышение экспрессности анализа и снятие ограничения по порядковому номеру определяемого элемента.

Указанный технический результат достигается за счет разработки технологии кластеризованной регрессионной оценки содержания Ci аналита, заключающейся в том, что на этапе анализа пробы измеряют только интенсивности Ii определяемых элементов, которые сопоставляют с аналогичными аналитическими характеристиками ( I i c ,  C i c ) одного градуировочного образца-соседа с целью компенсации неучтенного влияния состава наполнителя. Состав образца-соседа ( C c ) выбирается наиболее близким к составу к пробы ( C ) . Так как число ГО ограничено, можно допустить некоторую разницу в содержаниях элементов, интенсивности которых регистрируют. Влияния этой разницы на результат анализа учитывают с помощью модификации выражения (1) в виде:

Здесь Ij - интенсивности мешающих j элементов; а 1, αij - регрессионные коэффициенты оценивают предварительно на этапе градуирования методики с помощью градуировочных образцов, аналогичных по составу анализируемым пробам; k - число определяемых элементов.

Для выбора состава образца-соседа ( C c ) при анализе каждой пробы выполняется кластерный анализ градуировочных образцов. Каждый ГО представляет собой отдельный кластер.

Тогда вектор отличий D составов пробы и соседа будет иметь вид:

здесь d - мера расстояния между составом пробы и образца-соседа.

С учетом того, что количественно влияние элемента j на Ii зависит не только от содержания Cj, но и от величины эффектов поглощения и подвозбуждения, при оценке d задавали вес каждого Cj. В качестве веса Cj использовали регрессионные коэффициенты αij, рассчитанные для выражения (2).

Ввиду того, что в выражение (2) входят величины Ij, а не Cj, для оценки меры расстояния d использовали метрику1 (1 Метрика - правило вычисления расстояний между любой парой объектов исследуемого множества [Барсегян А.А., Куприянов М.С., Степаненко В.В., Холод И.И. Методы и модели анализа данных: OLAP и Data Mini. - СПб.: БХВ-Петербург, 2004. - 336 с.].) δ в форме:

Исходя из того что адекватность модели (2) будет тем выше, чем меньше поправочный член (4), критерием принадлежности пробы к кластеру конкретного ГО служит минимум величины δ.

В алгоритме выбора образца-соседа для каждой пробы дополнительно накладывали ограничение I i / I i c 1 .

После выбора образца-соседа расчет Ci для пробы выполняется по выражению (2).

Пример 1. Определение содержания (%) Fe (2,0-36,8), Zn (0,1-1,2), Cu (0,05-6,4), S (3,7-44,5), As (0,02-3,3) в пробах флотоконцентрата при переработке полиметаллических руд.

При проведении экспериментальных исследований ГО были представлены выборкой из 11 проб анализируемого продукта, в которых содержание аналитов установлено химическим, атомно-абсорбционным и рентгенофлуоресцентным методами. Состав нерудного компонента, представляющего матрицу проб, оставался неизвестен. Для каждой пробы было приготовлено по 3 излучателя в виде двухслойных таблеток на основе борной кислоты, представляющих независимые измельчения материала пробы. Таким образом, в эксперименте участвовало 33 ГО. Эксперимент приводили на вакуумном рентгеновском спектрометре последовательного действия Спектроскан MAKC-GV (НПО «Спектрон», Санкт-Петербург). Вторичный рентгеновский спектр возбуждения излучением рентгеновской трубки с Pd-анодом, работающей в режиме: напряжение 40 кВ, сила тока 2-4 мА в зависимости от элемента. Для этих ГО зарегистрировали интенсивности характеристического рентгеновского излучения только аналитов (S, Fe, Cu, Zn, As).

На рисунках 1 и 2 приведены зависимости Ci=f(Ii) для аналитических линий Fe и S в ГО. На графиках точки для ГО разделяются на два класса: I - 18 ГО с большим (14,6-36,8%) содержанием Fe; II - 15 ГО с малым (2,0-5,8%) содержанием Fe. Это объясняется тем, что в ГО II-го класса существенно выше доля нерудного компонента, влияние которого не учитывается.

Сначала с помощью полученных характеристик 33 ГО рассчитали коэффициенты уравнения (1), используя взвешенный метод наименьших квадратов (статистический вес 1/√Ci) для всего диапазона Ci [Молчанова Е.И., Смагунова А.Н., Прекина И.М. Программная оболочка для проведения РФА на аналитическом комплексе CPM-25-IBM // Аналитика и контроль. - 1999. - №2. - С. 38-43]. С помощью найденных коэффициентов рассчитали содержания S, Fe, Cu, Zn и As в этих ГО. В таблице приведена остаточная погрешность (коэффициент вариации V0, %) определения содержания пяти аналитов в ГО. Невысокая точность определения химического состава ГО и отсутствие данных о характеристиках нерудного компонента приводит к высокой остаточной погрешности адекватности уравнения (1). Затем для определения содержаний аналитов использовали технологию кластеризованной регрессии. Определение содержания каждого элемента в каждом ГО выполняли сопоставлением с образцом-соседом по выражению (2). Образец-сосед выбирали по критерию минимума δ после проведения кластеризации ГО с использованием метрики (4) и учета ограничения I i / I i c 1 .

Как видно из таблицы, разработанный способ позволяет без измерения дополнительных аналитических параметров в 2-5 раз повысить точность результатов анализа проб с неопределяемым составом наполнителя по сравнению с широко используемым уравнением (1).

Пример 2. Определение металлов в синтетических градуировочных образцах, адекватных по физико-химическим характеристикам сварочным аэрозолям (СА), нагруженным на фильтр.

Образцы представляют собой органические пленки, содержащие тонкоизмельченный порошок (носитель аэрозолей) известного химического состава; их получали по технологии изготовления синтетических стандартных образцов состава аэрозолей, собранных на фильтр [Патенты РФ №2239170, 2324915]. Масса порошка в органической пленке изменяется от 4 до 10%. Наиболее часто в СА контролируется содержание V, Cr, Mn, Fe и Ni, поэтому в исследуемых образцах аналиты представляли оксидами Fe2O3, Mn2O3, V2O5, Cr2O3 и NiO. В качестве наполнителя в них использовали соединения CaF2, SiO2 и NaF, которые являются основными компонентами сварочных аэрозолей; при контроле состава СА их содержание не определяется.

Для рассматриваемого примера получено 38 пленочных образцов, их масса (М) зависит от вариации толщины пленки и изменяется от 40 до 100 мг, что соответствует реальным пробам сварочных аэрозолей, нагруженным на фильтр. Диапазоны содержания (мг) V, Cr, Mn и Ni, Fe в пленках равны 0,05-0,6, 0,04-0,7, 0,04-1,2, 0,4-3,4 соответственно.

Эксперимент приводили на рентгеновском спектрометре последовательного действия VRA-30 фирмы «Carl Zeiss» (Германия). При выполнении исследований вторичный рентгеновский спектр возбуждения излучением рентгеновской трубки с Rh-анодом, работающей в режиме: напряжение 40 кВ, сила тока 40 мА; кристаллом-анализатором служил LiF (200). Для приготовленных ГО зарегистрировали только интенсивности аналитических линий аналитов (V, Cr, Mn, Fe, Ni).

На рисунках 3 и 4 приведены зависимости Ci=f(Ii) для аналитических линий Fe и V в ГО. На графиках точки для ГО разделяются на два класса: I - 19 ГО, имеющих массу М<80 мг, и II - 19 ГО с М>80 мг.

Сначала с помощью полученных характеристик 38 ГО рассчитали коэффициенты уравнения (1), используя взвешенный метод наименьших квадратов (статистический вес 1/√Ci) для всего диапазона Ci [Молчанова Е.И., Смагунова А.Н., Прекина И.М. Программная оболочка для проведения РФА на аналитическом комплексе CPM-25-IBM // Аналитика и контроль. - 1999. - №2. - С. 38-43]. С помощью найденных коэффициентов рассчитали содержания V и Fe в этих ГО, вводя поправки только на определяемые элементы (V, Cr, Mn, Fe и Ni). Остаточная погрешность определения Fe и V в ГО характеризуется коэффициентом вариации V0, равным 4,2 и 10,4% соответственно. Высокое значение V0 при использовании уравнения (1) обусловлено вариацией массы образцов и не учетом содержания неопределяемых компонентов наполнителя (CaF2, SiO2 и NaF), влияние которых связано с эффектом избирательного поглощения. Наиболее сильно этот эффект проявляется для ванадия (порядковый номер равен 23).

Затем для определения содержаний аналитов использовали технологию кластеризованной регрессии. Определение содержания элементов в каждом ГО выполняли сопоставлением с образцом-соседом по выражению (2), вводя поправки только на определяемые элементы (V, Cr, Mn, Fe и Ni). Образец-сосед выбирали по критерию минимума δ после проведения кластеризации ГО с использованием метрики (4) и учета ограничения М/Mc→1. Коэффициент вариации V0 для Fe и V составил 3,3 и 6,9% соответственно, то есть погрешность результатов анализа по предлагаемому способу по сравнению с использованием уравнения (1) уменьшилась примерно в 1,5 раза. Коэффициент вариации V0 будет также определяться погрешностями эксперимента (нестабильность работы аппаратуры, качество приготовления пленки-излучателя). Для ванадия дополнительный вклад в величину V0 будет вносить статистическая погрешность счета импульсов вследствие его низкого содержания и расположения его аналитической линии в длинноволновой области рентгеновского спектра.

Разработанный способ повышает экспрессность анализа проб с неопределяемым составом наполнителя при использовании рентгеновских спектрометров последовательного действия, снимает ограничение количественного определения содержания элементов по порядковому номеру.

Способ рентгенофлуоресцентного анализа элементного состава вещества, включающий облучение анализируемых проб и градуировочных образцов излучением рентгеновской трубки, регистрацию интенсивностей рентгеновского излучения анализируемых проб и градуировочных образцов, градуировку, включающую установление линейной связи содержания определяемого элемента i (Сi) с интенсивностями аналитических линий определяемого i (Ii) и мешающих j (Ij) элементов, проводящееся по результатам измерений градуировочных образцов, содержащих определяемый и мешающие элементы, выбор в качестве градуировочных образцов единой группы образцов, охватывающих весь диапазон содержаний определяемых и мешающих элементов для анализируемых проб, расчет содержания определяемого элемента в анализируемой пробе по уравнению регрессии, отличающийся тем, что измеряют интенсивности Ii аналитических линий только определяемых элементов, затем, с целью компенсации неучтенного влияния неопределяемых компонентов наполнителя на Ii, зарегистрированные от пробы интенсивности, сопоставляют с характеристиками одного градуировочного образца - соседа по выражению:

при этом состав образца-соседа выбирают наиболее близким к составу пробы , для чего выполняют кластерный анализ градуировочных образцов с использованием ограничения и правила вычисления расстояний между парой и (метрики 8):

где a 1, αij - регрессионные коэффициенты, которые оценивают предварительно на этапе градуирования методики с помощью градуировочных образцов; k - число определяемых элементов; j - мешающий элемент из числа k; с - индекс, обозначающий образец-сосед.



 

Похожие патенты:

Использование: для энергодисперсионного рентгенофлуоресцентного анализа. Сущность изобретения заключается в том, что устройство для энергодисперсионного рентгенофлуоресцентного анализа на основе вторичных излучателей включает рентгеновскую трубку, вторичные излучатели, устройство подачи контролируемого материала, кювету или транспортер с образцом, устройство для регистрации рентгеновского излучения и индикатор, самописец и/или исполнительный механизм, при этом в состав устройства дополнительно введены коллиматор излучения рентгеновской трубки, четное число n чередующихся вторичных излучателей, электромотор, коллиматор излучения вторичных излучателей, коллиматор флуоресцентного излучения образца, в качестве устройства для регистрации рентгеновского излучения использован сцинтилляционный детектор, балластное сопротивление, разделительный конденсатор и узкополосный усилитель, настроенный на частоту смены излучателей.

Использование: для рентгенофлуоресцентного определения примесей. Сущность изобретения заключается в том, что рентгенофлуоресцентное определение содержаний примесей конструкционных материалов включает измерение интенсивностей аналитических линий контролируемых примесей в группе образцов этого материала, дополнительно измеряют интенсивности аналитических линий примесей в стандартных образцах референтного материала, содержащего те же примеси, по результатам этих измерений строят градуировочные графики зависимости интенсивности аналитических линий элементов от содержания, при этом дополнительно проводят измерение обзорного спектра исследуемого конструкционного материала и определяют основной элемент исследуемого конструкционного материала наполнителя, дополнительно измеряют интенсивности аналитических линий элементов контролируемых примесей в образцах, состоящих из этого элемента, абсорбционные факторы и наклоны градуировочных графиков рассчитывают для образцов, состоящих из среднего значения содержания элемента в референтных градуировочных образцах и наполнителя исследуемого конструкционного материала, после чего получают истинные содержания примесей в исследуемом конструкционном материале умножением условных содержаний на отношение наклонов градуировочных графиков в референтном и исследуемом материалах по соответствующим математическим формулам.

Использование: для определения содержания тяжелых металлов в техническом углероде. Сущность изобретения заключается в том, что выполняют градуировку прибора рентгенофлуоресцентной спектрометрии для каждого элемента, регистрируют интенсивность аналитической линии элемента на соответствующей ему длине волны Iэ (имп/с), строят на основании полученных данных градуировочную характеристику, представляющую собой зависимость относительной интенсивности аналитической линии элемента Iотн от массовой доли определяемого элемента в эталонных образцах С (%), измеряют интенсивность аналитической линии элемента на соответствующей ему длине волны Iэ (имп/с), измеряют интенсивности фона в точках спектра, соответствующих началу и концу диапазона измерения элемента, вычисляют среднеарифметическое значение интенсивности фона в точках спектра соответствующих началу и концу диапазона измерения элемента Iфэ (имп/с), рассчитывают относительную интенсивность аналитической линии каждого элемента Iотн, находят по градуировочной характеристике массовую долю элемента в золе.

Изобретение относится к измерительной технике, а именно к устройствам для регистрации направленного рентгеновского или гамма-излучения. Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений содержит слой сцинтиллятора, непрозрачный вдоль направления распространения излучения и прозрачный в перпендикулярном направлении, при этом слой сцинтиллятора состоит из параллельных друг другу и оптически разделенных сборок пластин сцинтилляторов, непрозрачных вдоль направления распространения излучения и прозрачных в направлении, перпендикулярном поверхности сцинтиллятора, расположенных вплотную друг к другу в порядке возрастания среднего атомного номера сцинтилляторов в направлении распространения излучения, длина пластин сцинтилляторов l выбирается из условия: где µ(Еф-к) - коэффициент линейного ослабления излучения с энергией Еф-к, при которой сравниваются сечение фотопоглощения и сечение комптоновского рассеяния в материале пластины сцинтиллятора, поверхность сцинтиллятора находится в оптическом контакте с двухкоординатным позиционно чувствительным фотоприемным устройством.

Использование: для определения источников сырья для керамических артефактов. Сущность изобретения заключается в том, что способ определения источников сырья для археологических керамических артефактов включает рентгеновское облучение исследуемого материала, получение графиков термостимулированной люминесценции облученного материала.

Использование: для определения минерального состава глиноподобных образований. Сущность изобретения заключается в том, что отбирают пробы минералов, возбуждают в них рентгенолюминесценцию в оптическом диапазоне длин волн с последующим определением минерала, при этом для приготовленных проб снимают спектры рентгенолюминесценции в диапазоне длин волн 200-400 нм и определяют минерал галлуазит по рентгенолюминесценции в спектральном диапазоне 290-400 нм с максимальным излучением при λ=290-315 нм; определяют минерал нонтронит по максимальному высвечиванию в полосе 330-340 нм; определяют минерал ломонтит по широкой полосе рентгенолюминесценции в спектральном диапазоне 280-400 нм с максимальным излучением при λ=342 нм; определяют минерал палыгорскит по максимальному высвечиванию в полосе с максимумом при λ=345 нм; определяют минерал осоризаваит по наличию двух широких низкоинтенсивных полос рентгенолюминесценции в спектральных диапазонах 270-310 и 310-360 нм с максимальным излучением при λ=289 нм и λ=340 нм; определяют минерал алунит по очень слабой рентгенолюминесценции в спектральном диапазоне 200-400 нм с максимальным излучением в полосе при λ=350 нм.

Изобретение относится к способам определения тяжелых сернистых соединений и молекулярной серы в углеводородной жидкости, в частности в сжиженных углеводородных газах (СУГ), в том числе в широкой фракции летучих углеводородов (ШФЛУ), и может быть использовано в нефтяной и газовой промышленности и обеспечивает расширение диапазона использования способа определения серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии.

Использование: для рентгенофлуоресцентного анализа исследуемого материала. Сущность изобретения заключается в том, что устройство для рентгенофлуоресцентного анализа исследуемого материала содержит источник первичного рентгеновского излучения, формирователь потока возбуждения, прободержатель с образцом исследуемого материала, размещенным внутри формирователя потока возбуждения параллельно направлению распространения этого потока, и детектор рентгенофлуоресцентного излучения, расположенный напротив прободержателя с образцом, формирователь потока возбуждения представляет собой плоский рентгеновский волновод-резонатор с зазором между рефлекторами наноразмерной величины, при этом формирователь имеет отверстие для введения в поток образца исследуемого материала так, чтобы его исследуемая поверхность лежала в плоскости рефлектора, расположенного напротив детектора рентгенофлуоресцентного излучения, и расположенный на выходе волновода-резонатора детектор регистрации излучения, выполненный с возможностью юстировки устройства относительно источника первичного излучения, при этом прободержатель выполнен с возможностью перемещения независимо от волновода-резонатора в направлении, перпендикулярном направлению распространения потока возбуждающего излучения, при этом детектор регистрации излучения выполнен с возможностью регистрации излучения, прошедшего через волновод-резонатор, и контроля ввода образца в поток возбуждающего излучения.

Изобретение относится к области геологии, разработки и использования месторождений полезных ископаемых и может быть использовано на различных этапах поисковых и геолого-разведочных работ для выявления рубиновой минерализации.

Использование: для определения глинистых минералов с помощью рентгеноструктурного анализа. Сущность изобретения заключается в том, что выполняют отбор проб минералов, возбуждение в них рентгенолюминесценции в оптическом диапазоне длин волн с последующим определением минерала, при этом для приготовленных проб снимают спектры рентгенолюминесценции в диапазоне длин волн 200-500 нм и определяют каолинит по наличию полос люминесценции в диапазоне длин волн 290-400 нм с максимальным излучением при λ=335-357 нм, определяют диккит по максимальному излучению при λ=350-370 нм, определяют монтмориллонит по наличию полос люминесценции в диапазоне длин волн 320-380 нм, с максимальным излучением при λ=320-350 нм, определяют пекораит по наличию полос люминесценции в диапазоне длин волн 270-400 нм с максимальным излучением при λ=280-330 нм, определяют накрит по наличию широкой полосы рентгенолюминесценции при λ=270-500 нм с максимальным излучением при λ=340-350 нм.

Использование: для анализа пульп и растворов в потоке. Сущность изобретения заключается в том, что автоматический рентгеновский анализатор пульп и растворов в потоке включает стойку с измерительными кюветами, спектрометрический блок с источником первичного рентгеновского излучения, детектором и анализатором вторичного рентгеновского излучения, механизм перемещения спектрометрического блока и систему автоматического управления, при этом спектрометрический блок выполнен герметичным, оснащен узлом термоэлектрической стабилизации температуры всех электронных компонентов спектрометрического блока, при этом в качестве детектора вторичного рентгеновского излучения используют полупроводниковый детектор с термоэлектрическим охлаждением, в качестве анализатора вторичного рентгеновского излучения используют многоканальный амплитудный анализатор импульсов, а в качестве источника первичного рентгеновского излучения используют малогабаритную рентгеновскую трубку рабочей мощностью до 10 Вт. Технический результат: расширение диапазона и количества одновременно определяемых элементов, повышение точности и достоверности анализа, повышение радиационной безопасности эксплуатации, уменьшение массогабаритных характеристик, уменьшение энергопотребления. 5 з.п. ф-лы, 7 ил.
Наверх