Способ определения источников сырья для археологических керамических артефактов

Использование: для определения источников сырья для керамических артефактов. Сущность изобретения заключается в том, что способ определения источников сырья для археологических керамических артефактов включает рентгеновское облучение исследуемого материала, получение графиков термостимулированной люминесценции облученного материала. Предварительно отбирают пробы керамических изделий и пробы глинистого материала из предполагаемых источников сырья без выделения монофракций кварца, затем получают графики термостимулированной люминесценции в интервале температур 20-500°С для проб, облученных без предварительного прокаливания (ИТЛ1), и для проб, облученных после предварительного прокаливания исследуемого материала до температуры 500°С (ИТЛ2), и по сходству значений интенсивности термостимулированной люминесценции облученного материала в пробах керамических изделий и пробах глинистого материала в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробах керамических изделий и пробах глинистого материала определяют источник сырья для исследуемых археологических артефактов. Технический результат: повышение экспрессности и надежности определения источников сырья для керамических артефактов. 4 ил., 2 табл.

 

Изобретение относится к области археологии и может быть использовано при изучении археологических памятников для определения источников сырья для керамических артефактов.

Известен способ определения источников сырья для керамических артефактов на основе сравнения данных химического анализа для керамических изделий и глинистых пород. В настоящее время химический состав породы определяют с помощью трудоемких и дорогостоящих методов: рентгенофлюоресцентного анализа - РФА (в основе данного метода лежит зависимость интенсивности характеристического излучения от длины волны), масс-спектрометрии с индуктивно-связанной плазмой - ISP-MS (этот метод основан на использовании индуктивно-связанной плазмы в качестве источника ионов и масс-спектрометра для их разделения и детектирования) либо с помощью количественного спектрального анализа, также требующего длительной пробоподготовки. В результате, недостатком известного способа является сложная предварительная подготовка, большая затрата времени, большой объем исследуемого материала и средств на выполнение химического анализа. Кроме того, следует учитывать тот факт, что при различной температуре обжига во время производства керамики происходит концентрирование ряда элементов за счет улетучивания других, следствием чего могут быть ощутимые различия между количественным содержанием элементов-примесей в керамических изделиях и в источниках сырья (глинах).

Известен также минералогический способ определения источников сырья для керамических артефактов на основе диагностики минералов, входящих в состав керамики и глинистых пород, с помощью рентгенофазового анализа, заключающийся в том, что для исследуемых проб снимают рентгенограммы, после расшифровки которых с использованием диагностических таблиц, определяют минералы, входящие в состав данной пробы (Михеев В.И. Рентгенометрический определитель минералов/М.: Гос. Научно-техническое изд-во литературы по геологии и охране недр. - 1957. - С. 375-376). Недостатком этого способа является тот факт, что этим способом можно определить минерал только в том случае, если его содержание в пробе не менее одного процента. Другим недостатком этого метода является тот факт, что определение глинистых минералов требует специальной длительной пробоподготовки, заключающейся в многодневном отмучивании пробы. Кроме того, выводы, сделанные на основе сравнения минерального состава керамики и глинистых пород, могут быть некорректными ввиду того, что изготовление керамики обычно связано с высокотемпературным отжигом, в результате которого происходит изменение минерального состава.

Известен также термический способ определения глинистых минералов, заключающийся в изучении превращений, происходящих в условиях нагревания в минералах при различных физических и химических процессах, по сопровождающим их тепловым эффектам (Топор Н.Д., Огородова Л.П., Мельчакова Л.В. Термический анализ минералов и неорганических соединений. - М.: Изд-во МГУ, 1987. - 190 с.). Физические процессы связаны с изменением структуры или агрегатного состояния вещества без изменения его химического состава. Химические процессы приводят к изменению химического состава вещества. К таковым относятся дегидратация, диссоциация, окисление, реакция обмена и др. Каждому превращению, протекающему в образце, соответствует свой термический эффект. Совокупность всех термических эффектов при соответствующих температурах является индивидуальной характеристикой данного минерала, которая отражает особенности всех происходящих в нем превращений. Недостатком данного метода является сложность учета всех факторов, влияющих на результат анализа, таких как скорость нагревания, величина навески, степень дисперсии и плотности набивки образца в тигле, чувствительность в цепи дифференциальной термопары, свойства эталона, атмосфера печного пространства и др.

Наиболее близким по технической сущности является люминесцентный способ исследования структурного несовершенства кварца, заключающийся в том, что отбирают монофракции кварца, подвергают их рентгеновскому облучению при низких температурах (77 K), затем, нагревая до 170 K, регистрируют пики ТСЛ (термостимулированной люминесценции) 135 и 165 K и по их значению оценивают качество кварца (Вотяков С.Л., Крохалев В.Я., Пуртов В.К., Краснобаев А.А. Люминесцентный анализ структурного несовершенства кварца //Екатеринбург: УИФ "Наука", 1993. - С. 33). Низкодефектному кварцу соответствуют низкие отношения этих пиков и в целом низкая запасенная светосумма. Способ выбран за прототип. Недостатком известного способа является необходимость постоянного использования низкотемпературного рентгеновского возбуждения, получение низкотемпературных пиков ТСЛ, что связано с наличием специального вакуумного криостата и специализированной рентгеновской установки.

Задачей настоящего изобретения является разработка экспрессного способа определения источников сырья для археологических керамических артефактов с целью снижения себестоимости, повышения экспрессности и надежности определения источников сырья при сравнении керамических изделий и глинистых пород.

Поставленная задача решается тем, что согласно прототипу осуществляется пробоподготовка исследуемого материала, облучение его рентгеновскими лучами и возбуждение в нем термолюминесценции, но в отличие от прототипа отбор проб исследуемых керамических изделий и глинистого материала из предполагаемых источников сырья осуществляется без выделения монофракций кварца, что значительно облегчает пробоподготовку, затем получают графики термостимулированной люминесценции в интервале температур 20-300°С для проб, облученных без предварительного прокаливания (ИТЛ1), и для проб, облученных после предварительного прокаливания исследуемого материала до температуры 500°С (ИТЛ2).

Авторами изобретения экспериментально установлено, что источник сырья для исследуемых археологических артефактов определяется по сходству значений интенсивности термостимулированной люминесценции облученного материала в температурном интервале 100-200°С и отношений ИТЛ1/ИТЛ2 в пробах керамических изделий и пробах глинистого материала, что определяется наличием примесных и собственных дефектов на базе кремне- и алюмокислородных тетраэдров, характерных для большинства глинистых минералов и кварца. Различия между этими значениями не превышают 25-30% (Рисунок 1). Из рисунка 1 видно, что значения термостимулированной люминесценции в температурном интервале 100-200°С для образцов керамики №5 и глинистого материала №12 близки и находятся в пределах 530-540 усл.ед. для ИТЛ1 и в пределах 435-437 усл.ед. для ИТЛ2. То, что глинистый материал №12 послужил источником сырья для керамики №5, подтверждается данными рентгенофазового (с учетом того факта, что каолинит разрушился при температуре 500°С и поэтому в керамике его нет) и спектрального анализов (с учетом того факта, что за счет потерь при прокаливании во время изготовления керамики произошло концентрирование ряда элементов, например Ti) (таблицы 1 и 2).

Ниже приведены примеры конкретного осуществления изобретения.

Исследования проводились на образцах из четырех фрагментов керамической коллекции Томского кремля, обнаруженных внутри одного из объектов культурного слоя памятника - воеводской усадьбы. Также были исследованы пробы глинистых пород, взятых поблизости от воеводской усадьбы (в районе р. Ушайки на склоне Воскресенской горы) и в районе Лагерного сада, на берегу р. Томи, предполагаемых источниках сырья для керамических изделий Томского кремля. Было приготовлено 4 пробы керамических изделий и 4 пробы глинистых пород. Сравнительный термолюминесцентный анализ проводился на установке, собранной по схеме, основанной на измерении постоянного тока с использованием высоковольтного регулируемого блока питания фотоэлектронного умножителя ФЭУ-39, двух усилителей постоянного тока (УПТ) для фотоумножителя и для термопары, блока управления нагревом печки и блока оцифровки сигналов с ФЭУ и термопары и их передачи на компьютер. Нагревательный блок состоял из печи и регулятора температуры, измерение которой осуществлялось с помощью хромель-алюмелевой термопары. Термопара вместе с нагревателем градуировалась по реперным веществам. Скорость нагрева образца линейна и составляла 3.8-4°C в секунду. Все пробы были облучены в двух режимах: без предварительного прокаливания и после предварительного прокаливания до температуры 500°С. Для всех облученных проб снимались кривые термостимулированной люминесценции в диапазоне температур 20-300°С и проводился сравнительный анализ полученных данных с последующим определением источника сырья для исследуемых археологических артефактов по сходству значений интенсивности термостимулированной люминесценции облученного материала в пробах керамических изделий и пробах глинистого материала в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробах керамических изделий и пробах глинистого материала.

Пример 1

Взяли образец керамического изделия (проба №5 - фрагмент донца белоглиняной керамики) и образец белой глины Лагерного сада г. Томска (проба №12). Сделали протолочки. Приготовили навески по 20 мг для проб №5 и №12. Каждую навеску разделили на две равные части. Одну часть навески №5 и навески №12 (по 10 мг) облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ1) в интервале температур 20-300°С. Другую часть навесок №5 и №12 предварительно прокалили до температуры 500°С, затем облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ2) в интервале температур 20-300°С (Рисунок 1). По сходству значений интенсивности термостимулированной люминесценции облученного керамического изделия №5 и пробы глинистого материала №12 в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробе №5 (1,24) и пробе №12 (1,24), что видно из рисунка 1, определили пробу №12 как источник сырья для белоглиняной керамики №5. Достоверность определения подтверждена данными рентгенофазового анализа (с учетом того факта, что каолинит разрушился при температуре выше 500°С во время изготовления керамики и поэтому его там нет) и спектрального анализа (с учетом того факта, что за счет потерь при прокаливании во время изготовления керамики произошло концентрирование ряда элементов, например Ti) (таблицы 1 и 2).

Пример 2

Взяли образец керамического изделия (проба №3 - фрагмент муравленого печного изразца) и образец глинистого материала с осыпи западного склона Воскресенской горы г. Томска (проба №18). Сделали протолочки. Приготовили навески по 20 мг для проб №3 и №18. Каждую навеску разделили на две равные части. Одну часть навески №3 и навески №18 (по 10 мг) облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ1) в интервале температур 20-300°С. Другую часть навесок №3 и №18 предварительно прокалили до температуры 500°С, затем облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ2) в интервале температур 20-300°С (Рисунок 2). По сходству значений интенсивности термостимулированной люминесценции облученного керамического изделия №3 и пробы глинистого материала №18 в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробе №3 (1,1) и пробе №18 (1,1), что видно из рисунка 2, определили пробу №18 как источник сырья для фрагмента муравленого печного изразца №3. Достоверность определения подтверждена данными рентгенофазового анализа (с учетом того факта, что каолинит и кальцит разрушились при температуре выше 500 °С и поэтому в керамике их нет) и спектрального анализа (с учетом того факта, что за счет потерь при прокаливании во время изготовления керамики произошло концентрирование ряда элементов, например Ti и Mn) (таблицы 1 и 2).

Пример 3

Взяли образец керамического изделия (проба №4 - фрагмент терракотового печного изразца) и образец черной глины Лагерного сада г. Томска (проба №14). Сделали протолочки. Приготовили навески по 20 мг для проб №4 и №14. Каждую навеску разделили на две равные части. Одну часть навески №4 и навески №14 (по 10 мг) облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ1) в интервале температур 20-300°С. Другую часть навесок №4 и №14 предварительно прокалили до температуры 500°С, затем облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ2) в интервале температур 20-300°С (Рисунок 3). По сходству значений интенсивности термостимулированной люминесценции облученного керамического изделия №4 и пробы глинистого материала №14 в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробе №4 (1,5) и пробе №14 (1,4), что видно из рисунка 3, определили пробу №14 как источник сырья для фрагмента терракотового печного изразца. Достоверность определения подтверждена данными рентгенофазового анализа (с учетом того факта, что каолинит, хлорит и слюда разрушились при температуре выше 850°С и поэтому в керамике их нет) и спектрального анализа (с учетом того факта, что за счет потерь при прокаливании во время изготовления керамики произошло концентрирование ряда элементов, например Zn) (таблицы 1 и 2).

Пример 4

Взяли образец керамического изделия (проба №7 - фрагмент чернолощеного керамического изделия.) и образец глины с правого берега р. Ушайки недалеко от строения по ул. Алтайская 4 г. Томска (проба №17). Сделали протолочки. Приготовили навески по 20 мг для проб №7 и №17. Каждую навеску разделили на две равные части. Одну часть навески №7 и навески №17 (по 10 мг) облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ1) в интервале температур 20-300°С. Другую часть навесок №7 и №17 предварительно прокалили до температуры 500°С, затем облучили рентгеновскими лучами, после чего сняли график термостимулированной люминесценции (ИТЛ2) в интервале температур 20-300°С (Рисунок 4). По сходству значений интенсивности термостимулированной люминесценции облученного керамического изделия №7 и пробы глинистого материала №17 в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробе №7 (0,57) и пробе №17 (0,56), что видно из рисунка 4, определили пробу №17 как источник сырья для фрагмента чернолощеного керамического изделия №7. Достоверность определения подтверждена данными рентгенофазового анализа (с учетом того факта, что каолинит, хлорит и слюда разрушились при температуре выше 850°С и поэтому в керамике их нет) и спектрального анализа (с учетом того факта, что за счет потерь при прокаливании во время изготовления керамики произошло концентрирование ряда элементов, например Zn) (таблицы 1 и 2).

Таким образом, предложенный способ определения источников сырья для археологических керамических артефактов с помощью термолюминесцентного анализа позволяет быстро и надежно определять и подтверждать предполагаемые источники сырья.

Способ определения источников сырья для археологических керамических артефактов, включающий рентгеновское облучение исследуемого материала, получение графиков термостимулированной люминесценции облученного материала, отличающийся тем, что предварительно осуществляют отбор проб керамических изделий и проб глинистого материала из предполагаемых источников сырья без выделения монофракций кварца, затем получают графики термостимулированной люминесценции в интервале температур 20-500°С для проб, облученных без предварительного прокаливания (ИТЛ1), и для проб, облученных после предварительного прокаливания исследуемого материала до температуры 500°С (ИТЛ2), и по сходству значений интенсивности термостимулированной люминесценции облученного материала в пробах керамических изделий и пробах глинистого материала в температурном интервале 100-200°С (ИТЛ1 и ИТЛ2) и по сходству отношений ИТЛ1/ИТЛ2 в пробах керамических изделий и пробах глинистого материала определяют источник сырья для исследуемых археологических артефактов.



 

Похожие патенты:

Использование: для определения минерального состава глиноподобных образований. Сущность изобретения заключается в том, что отбирают пробы минералов, возбуждают в них рентгенолюминесценцию в оптическом диапазоне длин волн с последующим определением минерала, при этом для приготовленных проб снимают спектры рентгенолюминесценции в диапазоне длин волн 200-400 нм и определяют минерал галлуазит по рентгенолюминесценции в спектральном диапазоне 290-400 нм с максимальным излучением при λ=290-315 нм; определяют минерал нонтронит по максимальному высвечиванию в полосе 330-340 нм; определяют минерал ломонтит по широкой полосе рентгенолюминесценции в спектральном диапазоне 280-400 нм с максимальным излучением при λ=342 нм; определяют минерал палыгорскит по максимальному высвечиванию в полосе с максимумом при λ=345 нм; определяют минерал осоризаваит по наличию двух широких низкоинтенсивных полос рентгенолюминесценции в спектральных диапазонах 270-310 и 310-360 нм с максимальным излучением при λ=289 нм и λ=340 нм; определяют минерал алунит по очень слабой рентгенолюминесценции в спектральном диапазоне 200-400 нм с максимальным излучением в полосе при λ=350 нм.

Изобретение относится к способам определения тяжелых сернистых соединений и молекулярной серы в углеводородной жидкости, в частности в сжиженных углеводородных газах (СУГ), в том числе в широкой фракции летучих углеводородов (ШФЛУ), и может быть использовано в нефтяной и газовой промышленности и обеспечивает расширение диапазона использования способа определения серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии.

Использование: для рентгенофлуоресцентного анализа исследуемого материала. Сущность изобретения заключается в том, что устройство для рентгенофлуоресцентного анализа исследуемого материала содержит источник первичного рентгеновского излучения, формирователь потока возбуждения, прободержатель с образцом исследуемого материала, размещенным внутри формирователя потока возбуждения параллельно направлению распространения этого потока, и детектор рентгенофлуоресцентного излучения, расположенный напротив прободержателя с образцом, формирователь потока возбуждения представляет собой плоский рентгеновский волновод-резонатор с зазором между рефлекторами наноразмерной величины, при этом формирователь имеет отверстие для введения в поток образца исследуемого материала так, чтобы его исследуемая поверхность лежала в плоскости рефлектора, расположенного напротив детектора рентгенофлуоресцентного излучения, и расположенный на выходе волновода-резонатора детектор регистрации излучения, выполненный с возможностью юстировки устройства относительно источника первичного излучения, при этом прободержатель выполнен с возможностью перемещения независимо от волновода-резонатора в направлении, перпендикулярном направлению распространения потока возбуждающего излучения, при этом детектор регистрации излучения выполнен с возможностью регистрации излучения, прошедшего через волновод-резонатор, и контроля ввода образца в поток возбуждающего излучения.

Изобретение относится к области геологии, разработки и использования месторождений полезных ископаемых и может быть использовано на различных этапах поисковых и геолого-разведочных работ для выявления рубиновой минерализации.

Использование: для определения глинистых минералов с помощью рентгеноструктурного анализа. Сущность изобретения заключается в том, что выполняют отбор проб минералов, возбуждение в них рентгенолюминесценции в оптическом диапазоне длин волн с последующим определением минерала, при этом для приготовленных проб снимают спектры рентгенолюминесценции в диапазоне длин волн 200-500 нм и определяют каолинит по наличию полос люминесценции в диапазоне длин волн 290-400 нм с максимальным излучением при λ=335-357 нм, определяют диккит по максимальному излучению при λ=350-370 нм, определяют монтмориллонит по наличию полос люминесценции в диапазоне длин волн 320-380 нм, с максимальным излучением при λ=320-350 нм, определяют пекораит по наличию полос люминесценции в диапазоне длин волн 270-400 нм с максимальным излучением при λ=280-330 нм, определяют накрит по наличию широкой полосы рентгенолюминесценции при λ=270-500 нм с максимальным излучением при λ=340-350 нм.

Использование: для автоматизированных подводных исследований состава водной среды и донных осадков. Сущность изобретения заключается в том, что рентгенофлуоресцентный анализатор содержит размещенные в изолированном корпусе источник первичного рентгеновского излучения, коллиматор, выполненный с обеспечением формирования коллимированного пучка первичного рентгеновского излучения в виде ленточного плоского пучка, и детектор флуоресцентного излучения пробы жидкости, которые установлены с обеспечением положения их оптических осей в одной плоскости, в качестве устройства забора пробы выбран плунжер, который одним концом выведен в канал ввода/вывода жидкости с обеспечением герметичности наружного прочного корпуса, при этом на поверхности плунжера выполнен плоский участок с насечками в виде канавок с плоскими стенками, которые параллельны между собой, а плунжер установлен с обеспечением ориентации насечек параллельно плоскости расположения оптических осей источника рентгеновского излучения, коллиматора и детектора флуоресцентного излучения, причем взаимное расположение коллиматора и плунжера выполнено с обеспечением угла полного внешнего отражения коллимированного пучка первичного рентгеновского излучения от плоского участка плунжера с насечками, а размеры плоского участка плунжера с насечками соизмеримы с размерами сечения коллимированного пучка первичного рентгеновского излучения.

Настоящее изобретение относится к области химии почв, а именно к методам определения редкоземельных элементов Pr, Nd и Sm в почвах, и описывает рентгенорадиометрический энергодисперсионный способ определения содержаний Pr, Nd и Sm в почвах, включающий определение элементов Ba, La, Ce с радиоизотопным источником 241Am с помощью следующих стадий: накапливание исходного спектра анализируемого образца в интервале энергий 31-41 кэВ; построение модельного спектра мешающих своим наложением Kβ-линий Ba, La и Ce с последующим определением истинных интенсивностей спектральных Kα-линий Pr, Nd, Sm, вычисление концентрации искомых элементов по обобщенному градуировочному графику зависимости концентраций лантанидов La, Ce, Pr, Nd, Sm от интенсивностей линий.

Использование: для рентгеноспектрального анализа негомогенных материалов. Сущность изобретения заключается в том, что определяют интенсивность IA аналитической линии определяемого элемента А в анализируемом материале, рассчитывают интенсивности IA2I в образцах-смесях из анализируемого материала и образца сравнения с заданным содержанием CBji определяемого элемента А и сравнивают количественно интенсивности IA и IA2I, обеспечивая оценку содержания СA определяемого элемента в анализируемом материале, при этом оценку содержания определяемого элемента в анализируемом материале производят в порядке определения изначально интенсивности IA0 и содержания СA0 определяемого элемента в образце сравнения, а также значимых коэффициентов влияния «мешающих» элементов, содержащихся в анализируемом материале, на интенсивность определяемого элемента в материале, определения экспериментально интенсивностей аналитических линий «мешающих» элементов, содержащихся в анализируемом материале и образце сравнения, преобразования интенсивностей IA и IA0 определяемого элемента А в анализируемом материале и образце сравнения соответственно путем учета интенсивностей и значимых коэффициентов влияния «мешающих» элементов и количественного сравнения преобразованных интенсивностей IAj и IA2I в анализируемом материале и расчетных образцах-смесях соответственно.
Использование: для изготовления эталонов для рентгенофлуоресцентного анализа состава тонких пленок малокомпонентных твердых растворов и сплавов. Сущность изобретения заключается в том, что на подложку наносят однокомпонентные слои компонентов сплава или твердого раствора толщиной, обеспечивающей соотношение количества атомов компонентов, соответствующее их соотношению в эталонируемом сплаве или твердом растворе.

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов, содержащихся в буровом растворе.

Изобретение относится к измерительной технике, а именно к устройствам для регистрации направленного рентгеновского или гамма-излучения. Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений содержит слой сцинтиллятора, непрозрачный вдоль направления распространения излучения и прозрачный в перпендикулярном направлении, при этом слой сцинтиллятора состоит из параллельных друг другу и оптически разделенных сборок пластин сцинтилляторов, непрозрачных вдоль направления распространения излучения и прозрачных в направлении, перпендикулярном поверхности сцинтиллятора, расположенных вплотную друг к другу в порядке возрастания среднего атомного номера сцинтилляторов в направлении распространения излучения, длина пластин сцинтилляторов l выбирается из условия: где µ(Еф-к) - коэффициент линейного ослабления излучения с энергией Еф-к, при которой сравниваются сечение фотопоглощения и сечение комптоновского рассеяния в материале пластины сцинтиллятора, поверхность сцинтиллятора находится в оптическом контакте с двухкоординатным позиционно чувствительным фотоприемным устройством. Технический результат - восстановление спектра рентгеновского и гамма-излучений при наличии в спектре падающего на него излучения рентгеновских или гамма-квантов с энергией вблизи К-края фотоэлектрического поглощения материала сцинтиллятора. 2 ил., 2 табл.

Использование: для определения содержания тяжелых металлов в техническом углероде. Сущность изобретения заключается в том, что выполняют градуировку прибора рентгенофлуоресцентной спектрометрии для каждого элемента, регистрируют интенсивность аналитической линии элемента на соответствующей ему длине волны Iэ (имп/с), строят на основании полученных данных градуировочную характеристику, представляющую собой зависимость относительной интенсивности аналитической линии элемента Iотн от массовой доли определяемого элемента в эталонных образцах С (%), измеряют интенсивность аналитической линии элемента на соответствующей ему длине волны Iэ (имп/с), измеряют интенсивности фона в точках спектра, соответствующих началу и концу диапазона измерения элемента, вычисляют среднеарифметическое значение интенсивности фона в точках спектра соответствующих началу и концу диапазона измерения элемента Iфэ (имп/с), рассчитывают относительную интенсивность аналитической линии каждого элемента Iотн, находят по градуировочной характеристике массовую долю элемента в золе. Технический результат: обеспечение возможности определения содержания тяжелых металлов в техническом углероде с высокой точностью. 1 ил., 1 табл.

Использование: для рентгенофлуоресцентного определения примесей. Сущность изобретения заключается в том, что рентгенофлуоресцентное определение содержаний примесей конструкционных материалов включает измерение интенсивностей аналитических линий контролируемых примесей в группе образцов этого материала, дополнительно измеряют интенсивности аналитических линий примесей в стандартных образцах референтного материала, содержащего те же примеси, по результатам этих измерений строят градуировочные графики зависимости интенсивности аналитических линий элементов от содержания, при этом дополнительно проводят измерение обзорного спектра исследуемого конструкционного материала и определяют основной элемент исследуемого конструкционного материала наполнителя, дополнительно измеряют интенсивности аналитических линий элементов контролируемых примесей в образцах, состоящих из этого элемента, абсорбционные факторы и наклоны градуировочных графиков рассчитывают для образцов, состоящих из среднего значения содержания элемента в референтных градуировочных образцах и наполнителя исследуемого конструкционного материала, после чего получают истинные содержания примесей в исследуемом конструкционном материале умножением условных содержаний на отношение наклонов градуировочных графиков в референтном и исследуемом материалах по соответствующим математическим формулам. Технический результат: обеспечение возможности высокоточного рентгенофлуоресцентного определения примесей в разнообразных материалах. 1 ил., 1 табл.

Использование: для энергодисперсионного рентгенофлуоресцентного анализа. Сущность изобретения заключается в том, что устройство для энергодисперсионного рентгенофлуоресцентного анализа на основе вторичных излучателей включает рентгеновскую трубку, вторичные излучатели, устройство подачи контролируемого материала, кювету или транспортер с образцом, устройство для регистрации рентгеновского излучения и индикатор, самописец и/или исполнительный механизм, при этом в состав устройства дополнительно введены коллиматор излучения рентгеновской трубки, четное число n чередующихся вторичных излучателей, электромотор, коллиматор излучения вторичных излучателей, коллиматор флуоресцентного излучения образца, в качестве устройства для регистрации рентгеновского излучения использован сцинтилляционный детектор, балластное сопротивление, разделительный конденсатор и узкополосный усилитель, настроенный на частоту смены излучателей. Технический результат: обеспечение высокого энергетического разрешения при замене полупроводниковых детекторов (ППД) с допустимой скоростью счета, не превышающей 5×104-1×105 имп/с. 2 ил.

Использование: для рентгенофлуоресцентного определения содержания компонентов в материалах сложного химического состава. Сущность: заключается в том, что формируют единую группу градуировочных образцов, охватывающих весь диапазон содержаний определяемых и мешающих элементов для анализируемых проб, измеряют интенсивности аналитических линий только определяемых i (Ii) элементов от анализируемых проб и градуировочных образцов, устанавливают градуировочную функцию в форме уравнения регрессии, затем, с целью компенсации неучтенного влияния неопределяемых компонентов наполнителя на Ii, зарегистрированные от пробы интенсивности сопоставляют с характеристиками одного градуировочного образца-соседа и находят содержание элемента i (Ci) по определенному выражению, выбирая состав образца-соседа наиболее близким к составу пробы. Технический результат: повышение экспрессности анализа и снятие ограничения по порядковому номеру определяемого элемента. 1 табл., 4 ил.

Использование: для анализа пульп и растворов в потоке. Сущность изобретения заключается в том, что автоматический рентгеновский анализатор пульп и растворов в потоке включает стойку с измерительными кюветами, спектрометрический блок с источником первичного рентгеновского излучения, детектором и анализатором вторичного рентгеновского излучения, механизм перемещения спектрометрического блока и систему автоматического управления, при этом спектрометрический блок выполнен герметичным, оснащен узлом термоэлектрической стабилизации температуры всех электронных компонентов спектрометрического блока, при этом в качестве детектора вторичного рентгеновского излучения используют полупроводниковый детектор с термоэлектрическим охлаждением, в качестве анализатора вторичного рентгеновского излучения используют многоканальный амплитудный анализатор импульсов, а в качестве источника первичного рентгеновского излучения используют малогабаритную рентгеновскую трубку рабочей мощностью до 10 Вт. Технический результат: расширение диапазона и количества одновременно определяемых элементов, повышение точности и достоверности анализа, повышение радиационной безопасности эксплуатации, уменьшение массогабаритных характеристик, уменьшение энергопотребления. 5 з.п. ф-лы, 7 ил.

Изобретение относится к экспрессному контролю объемной концентрации цементного раствора в грунтоцементной пульпе при создании подземных строительных конструкций струйной цементацией. Способ включает отбор проб исследуемого материала и определение рентгенофлуоресцентным методом количественного содержания химического элемента в отобранных пробах, причем перед струйной цементацией выбирают химический элемент для закачки его в грунт совместно с цементным раствором при струйной цементации, приготавливают цементный раствор замешиванием цемента в воде и при приготовлении цементного раствора вводят выбранный химический элемент в цементный раствор, отбирают пробу цементного раствора, закачивают цементный раствор под давлением в грунт для образования в грунте строительной конструкции и выделения из грунта грунтоцементной пульпы, при проведении струйной цементации отбирают пробу грунтоцементной пульпы, рентгенофлуоресцентным методом производят измерение весовой концентрации химического элемента в пробах и плотности материалов проб, вычисляют объемную концентрацию цементного раствора в грунтоцементной пульпе. Достигается возможность экспресс-определения объемной концентрации цементного раствора в грунтоцементной пульпе с достаточной точностью для контроля, своевременной корректировки процесса цементации и повышения качества подземных конструкций. 8 з.п. ф-лы, 3 пр.

Использование: для рентгеноспектрального анализа тяжелых элементов. Сущность изобретения заключается в том, что рентгеновский анализатор содержит источник рентгеновского или гамма-излучения, держатель образца, устройство детектирования с множеством детекторов, регистрирующую аппаратуру, входы которой подключены к выходам детекторов, коллиматор первичного пучка, коллиматор и фильтр вторичного пучка, при этом держатель образца выполнен с возможностью установки образца с плоской или вогнутой по сфере рабочей поверхностью на сфере, источник или его фокус расположен на упомянутой сфере, коллиматор вторичного пучка содержит поперечные пучку перегородки с отверстиями, его выходное отверстие расположено в противоположной источнику точке, а детекторы компактно расположены во вторичном пучке. Технический результат: упрощение коллиматора вторичного пучка, обеспечение однородности образца и снижение порога обнаружения редкоземельных и более тяжелых элементов. 1 з.п. ф-лы, 2 ил.

Использование: для рентгеноспектрального анализа веществ. Сущность изобретения заключается в том, что рентгеновский спектрометр содержит рентгеновскую трубку, фильтры первичного и вторичного пучков, держатель образца, пластинчатые коллиматоры, кристаллы-анализаторы, устройство детектирования с детекторами, регистрирующую аппаратуру, подключенную к выходам детекторов, причем кристаллы и устройство детектирования выполнены с возможностью сканирования (вращения) вокруг оси, проходящей через центр отражающей поверхности кристалла, и установки кристалла под углом θ, а детекторов под углом 2θ к оси вторичного пучка, при этом использовано устройство детектирования с полупроводниковыми детекторами и соответствующей регистрирующей аппаратурой, введен дополнительный коллиматор с отверстиями в поперечных вторичному пучку перегородках и обеспечена возможность работы спектрометра в режимах с волновой и энергетической дисперсией. Технический результат: снижение порогов обнаружения элементов и повышение производительности. 2 з.п. ф-лы, 4 ил.

Использование: для рентгеноспектрального анализа золота и тяжелых элементов. Сущность изобретения заключается в том, что рентгеновский анализатор золота и тяжелых элементов содержит рентгеновскую трубку с боковым окном в качестве источника излучения, держатель образца, устройство детектирования с расположенными в ряд детекторами, регистрирующую аппаратуру, входы которой подключены к выходам детекторов, коллиматоры и фильтры первичного и вторичного пучков, причем коллиматор вторичного пучка выполнен с множеством отверстий или каналов, при этом держатель образца выполнен с возможностью установки образца с плоской или вогнутой по цилиндру рабочей поверхностью на цилиндре, ось рентгеновской трубки расположена в перпендикулярной цилиндру плоскости, а ее фокус расположен на образующей цилиндра, детекторы или выходные отверстия коллиматора вторичного пучка расположены на образующей, проходящей через диаметрально противоположную источнику точку цилиндра, причем коллиматор вторичного пучка выполнен с разделительными пластинами в аксиальных к пучку электронов плоскостях. Технический результат: обеспечение однородности и прочности образца, увеличение эффективности и контрастности спектров. 4 ил., 1 табл.

Использование: для определения источников сырья для керамических артефактов. Сущность изобретения заключается в том, что способ определения источников сырья для археологических керамических артефактов включает рентгеновское облучение исследуемого материала, получение графиков термостимулированной люминесценции облученного материала. Предварительно отбирают пробы керамических изделий и пробы глинистого материала из предполагаемых источников сырья без выделения монофракций кварца, затем получают графики термостимулированной люминесценции в интервале температур 20-500°С для проб, облученных без предварительного прокаливания, и для проб, облученных после предварительного прокаливания исследуемого материала до температуры 500°С, и по сходству значений интенсивности термостимулированной люминесценции облученного материала в пробах керамических изделий и пробах глинистого материала в температурном интервале 100-200°С и по сходству отношений ИТЛ1ИТЛ2 в пробах керамических изделий и пробах глинистого материала определяют источник сырья для исследуемых археологических артефактов. Технический результат: повышение экспрессности и надежности определения источников сырья для керамических артефактов. 4 ил., 2 табл.

Наверх