Способ экструзионной сушки галобутилкаучуков



Способ экструзионной сушки галобутилкаучуков
Способ экструзионной сушки галобутилкаучуков
B01D1/28 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2624646:

Публичное Акционерное Общество "Нижнекамскнефтехим" (RU)

Изобретение относится к способу производства галобутилкаучуков, а именно к способу сушки влажной крошки этих каучуков. Техническим результатом является повышение эффективности сушки каучука без снижения его качества. Технический результат достигается способом удаления влаги из мокрой крошки галобутилкаучуков, полученных путем прямого галоидирования растворенного в инертном растворителе бутилкаучука, в сушильном агрегате, состоящем из 2-х или более червячных машин, в последней из которых происходит термическое выпаривание влаги, с подачей в зону сжатия этой машины азота высокого давления. При этом превышение давления азота над давлением в зоне сжатия составляет 2,0-5,0 МПа, а точка ввода азота находится в 35-50 см от фильерной плиты последней червячной машины. 1 табл., 10 пр.

 

Изобретение имеет отношение к способу производства галобутилкаучуков (хлор- и бром-), которые в основном используются для получения гермослоя бескамерных шин в шинной промышленности. А именно к способу сушки влажной крошки этих каучуков на червячных машинах экструзионного типа.

В промышленности галобутилкаучуки получают путем прямого галоидирования свободными галогенами раствора бутилкаучука в инертном растворителе, в частности в гексане. Образовавшийся раствор галобутилкаучука отмывается и нейтрализуется от галогенводорода, освобождается от растворителя методом водной дегазации. Полученная при этом крошка каучука в воде усредняется и подается на сушку, которая производится в экструзионных машинах червячного типа при повышенной температуре до содержания влаги в каучуке не более 0,6 масс. %. Однако в последнее время требования со стороны потребителей к содержанию влаги в готовом каучуке все более ужесточаются, т.к. остаточная влага отрицательно влияет на процесс переработки каучука.

Сложность сушки галобутилкаучуков заключается в том, что они, как и исходный для них бутилкаучук, являются полимерами с высокой газонепроницаемостью и достаточно тяжело отдают адсорбированную внутри крошки влагу, в то же время галобутилкаучуки при повышенной температуре склонны к процессу дегидрогалогенирования и сшивки - скорчингу, что и может произойти при ужесточении условий сушки. С другой стороны, существуют величины критически минимальной температуры и влагосодержания, при которых сушка каучука становится невозможной.

Известен способ сушки каучуков в машинах экструзионного типа, при котором сушильный агрегат состоит из двух и более червячных машин, в первых происходит механический отжим влаги, а в последней - термическое выпаривание при сбросе давления [В.И. Ермаков, B.C. Шеин, В.О. Рейхсфельд. Инженерные методы расчета процессов получения и переработки эластомеров. «Химия». Ленинградское отделение, 1982, с. 127-133]. Первая машина представляет собой цилиндрический корпус с червячным валом, в котором каучук сжимается при одновременном перемешивании, и за счет уменьшения свободного объема между стенкой камеры и червячным валом происходит отжим влаги. Остаточное содержание влаги в каучуке после отжимной машины - до 15 масс. %. и менее при содержании влаги на входе до 40-60%. На следующей стадии сушки дальнейшее удаление влаги происходит за счет выброса перегретых паров при сбросе давления. Машина содержит корпус и один или два вращающихся в противоположном направлении червячных вала и заканчивается фильерной плитой (диск со сквозными отверстиями). Корпус состоит из двух половин, первая - охлаждается водой, вторая - обогревается паром. Каучук при движении через экструдер разогревается за счет механической энергии и передачи тепла от рубашки в корпусе. Вода, содержащаяся в каучуке, находится в перегретом состоянии на протяжении всего периода движения через корпус машины. Температура каучука перед фильерной плитой может достигать 170°C и выше. При этом давление, создаваемое витками червячного вала, выше, чем давление перегретой воды в крошке каучука. При выходе каучука из фильерной головки происходит сброс давления, внутренняя вода превращается в пар, разрывает крошку, и таким образом удаляется. Влажность крошки на выходе составляет 0,5-1,0%.

Глубина обезвоживания при этом равна влагосодержанию каучука, соответствующему содержанию адсорбционно-связанной влаги.

Основным недостатком этого способа является высокая температура во второй части сушильной машины, в случае сушки галобутилкаучуков способная приводить к процессу дегидрогалогенирования и сшивки каучука, а также недостаточная степень обезвоживания каучука на выходе из машины (остаточная влага в каучуке не ниже 0,6%), приводящая к необходимости дальнейшего использования вибрационной сушилки большой протяженности для доведения показателя содержания воды до значения 0,3-0,5% или ниже.

Наиболее близким к заявляемому является способ экструзионной сушки каучуков в виде влажной крошки, содержащей от 0,5 до 16% воды [Pat. US №4508592, 2.04.85, B01D 1/28, B01D 1/00]. Согласно этому способу мокрая крошка после отжимных машин проходит через червячный экструдер последней машины при постоянно повышающихся температуре и давлении, доходит до зоны высокого сжатия, после чего при достижении максимальной температуры давление сбрасывается и полимер разрывается, отдавая внутреннюю влагу. Усовершенствование этого процесса заключается во введении в одну или более точек экструдера инертного газа в количестве до 0,018 кг⋅моль на 45,36 кг полимера. Инертный газ вводится с давлением, превышающим давление в зоне максимального сжатия. Температура взорвавшейся крошки на выходе - 51,3-73°C. В том случае, если инертный газ - это азот, его дозировка составляет примерно 3,6-36,2 м3/час на 2-5 т влажного каучука в час, температура в зоне сжатия доходит до 190°C, а азот подается с давлением до 13,8 МПа.

Недостатком этого способа является высокий расход азота, увеличивающий себестоимость готового каучука и приводящий к снижению его качества, а именно: полученный по такой технологии галобутилкаучук имеет ускоренные вулканизационные характеристики. Слишком большая разница между давлением подаваемого азота и собственным давлением в зоне сжатия сушильной машины (7,0-8,0 МПа) затрудняет сушку и приводит к увеличению температуры в зоне сжатия, которая также сказывается на качестве каучука, а именно на его вулканизационных характеристиках, содержании галогена и вязкости по Муни.

Задачей заявляемого способа является эффективная сушка галобутилкаучуков, позволяющая на выходе из сушильной машины получать продукт с содержанием влаги менее 0,3 масс. %. (в частности, менее 0,1 масс. %) без снижения его качества.

Поставленная задача решается за счет того, что в способе удаления влаги из мокрой крошки галобутилкаучуков, полученных путем прямого галоидирования растворенного в инертном растворителе бутилкаучука, в сушильном агрегате, состоящем из 2-х или более червячных машин, в последней из которых происходит термическое выпаривание влаги, с подачей в зону сжатия этой машины азота высокого давления, превышение давление азота над давлением в зоне сжатия составляет 2,0-5,0 МПа, а точка ввода азота находится на расстоянии 35-50 см от фильерной плиты последней сушильной машины.

В отличие от известных в предлагаемом способе задача достижения необходимой степени осушки при сохранении качества галобутилкаучука решается комплексным изменением термомеханических параметров на последней сушильной машине в присутствии азота высокого давления. Изменение места ввода азота высокого давления в зону сжатия последней сушильной машины меняет уравнение теплового баланса, на котором базируется процесс сушки с поправкой на вязкость каучука.

Преимуществом предлагаемого способа является то, что без дополнительных энергетических затрат достигается необходимая степень осушки галобутилкаучука при сохранении его качества.

Предлагаемый способ осуществляется, например, следующим образом: осушка галобутилкаучука проводится на сушильной машине типа Welding Engineers, состоящей из 3-х агрегатов экструзионного типа, 2 первые по ходу экструдера предназначены для отжима и предварительной сушки мокрой крошки, а 3-й для термического обезвоживания. Третья машина является двухсекционной с паровой рубашкой. Содержит приемное устройство крошки, 2 шнека (червячных вала), вращающиеся в разные стороны, и заканчивается фильерной плитой. Ближняя к фильере секция является зоной высокого сжатия, в которой температура и давление достигают максимального значения. В одну точку зоны сжатия подается азот от специального компрессора под давлением, превышающим собственное давление в этой зоне. Крошка галобутилкаучука после предварительной сушки на 2-х первых машинах с содержанием влаги в пределах 4-7 масс. % через приемный бункер подается на третью машину (экструдер) термической сушки. При движении через экструдер крошка разогревается за счет механической энергии и передачи тепла от рубашки в корпусе, давление увеличивается за счет температуры и, кроме того, создается витками червячных валов. Вода, содержащаяся в каучуке, находится в перегретом состоянии на протяжении всего периода движения через корпус машины. Температура и давление достигают наивысшего значения в зоне сжатия. При выходе каучука из фильерной головки происходит сброс давления, внутренняя вода превращается в пар, разрывает крошку, и таким образом удаляется. Подача азота в зону сжатия приводит к его проникновению в крошку и способствует ее разрыву и освобождению от воды. Способ иллюстрирует следующие примеры.

Пример 1 (по прототипу). Крошка хлорбутилкаучука, содержащего 1,2 масс. % хлора с вязкостью по Муни (125°C), равной 39 усл.ед., и содержанием влаги 6,9 масс. %, после предварительной обработки на 2-х экструдерах отжима и предварительной сушки подается в приемное устройство двухшнековой сушильной машины для термического обезвоживания. Скорость подачи каучука - 6,0 т в час. Азот подается в экструдер через входной штуцер, расположенный на расстоянии 30 см от фильеры. Давление азота на входе 13,8 МПа, максимальное давление в зоне сжатия - 8,0 МПа. У каучука, полученного после сушки, определяют содержание в нем влаги, вязкость по Муни (125°C), содержание связанного хлора, реометрические показатели резиновых смесей, приготовленных по стандартной рецептуре.

Пример 2. Способ осуществляется как в примере 1, за исключением того, что входной штуцер, через который азот подается в зону сжатия последней сушильной машины, находится на расстоянии 40 см от фильерной плиты. Давление азота на входе 10,0 МПа, максимальное давление в зоне сжатия - 6,0 МПа.

Примеры 3-5. Способ осуществляется как в примере 2, за исключением того, что входной штуцер, через который азот подается в зону сжатия последней сушильной машины, находится на расстоянии 35 см (пример №3), 50 см (пример №4), 55 см (пример №5) от фильерной плиты.

Примеры 6-8. Способ осуществляется как в примере 2, за исключением того, что давление азота на входе в экструдер составляет 11 МПа (пример №6), 8 МПа (пример №7), 7 МПа (пример №8).

Пример 9. Способ осуществляется как в примере 2, за исключением того, что осушке подвергается крошка бромбутилкаучука, содержащего 1,8% связанного брома, с вязкостью по Муни (125°C), равной 32 усл. ед.

Пример 10. Способ осуществляется как в примере 2, за исключением того, что сушильный агрегат, на котором проводится обезвоживание каучука, состоит из 2-х машин, на первой происходит отжим и предварительное обезвоживание, а на второй (последней), как и в предыдущих примерах - термическое обезвоживание с подачей азота. Содержание влаги в мокрой крошке перед подачей на последнюю машину составляет 15 масс. %.

Данные, полученные при проведении экспериментов в соответствии с примерами 1-10, приведены в таблице.

Из данных таблицы 1 следует, что в способе удаления влаги из мокрой крошки галобутилкаучуков, полученных путем прямого галоидирования, растворенного в инертном растворителе бутилкаучука, в сушильном агрегате, состоящем из 2-х или более червячных машин, в последней из которых происходит термическое выпаривание влаги, с подачей в зону сжатия этой машины азота высокого давления, отличающемся тем, что превышение давления азота над давлением в зоне сжатия составляет 2,0-5,0 МПа, а точка ввода азота находится в 35 - 50 см от фильерной плиты последней сушильной машины, удается добиться эффективной сушки галобутилкаучуков (хлор- и бром-) при полном сохранении их качества. При этом превышение давления азота над давлением в зоне сжатия должно находиться в пределах 2,0-5,0 МПа. При повышении этого показателя (как в прототипе, пример 1) увеличивается расход азота и температура в зоне сжатия, что отрицательно сказывается на качестве каучука: снижается содержание галогена за счет процесса дегидрогалогенирования, растет вязкость по Муни за счет сшивки и ускоряется процесс неконтролируемой вулканизации (падает показатель t90). При уменьшении этого показателя ниже 2 МПа (пример 8) снижается эффективность сушки. Оптимальное расстояние точки ввода азота от фильерной плиты последней сушильной машины должно находиться в пределах 35-50 см. При снижении этого показателя (как в прототипе, пример 1) увеличивается расход азота, повышается температура в зоне сжатия и это влечет за собой ухудшение качества каучука. При увеличении этого показателя (пример №5) снижается эффективность сушки.

Предлагаемое техническое решение одинаково эффективно для хлор- и бром- (пример №9) каучуков и одинаково работает на сушильных агрегатах, состоящих из 2-х или более червячных машин (экструдеров).

Способ удаления влаги из мокрой крошки галобутилкаучуков, полученных путем прямого галоидирования, растворенного в инертном растворителе бутилкаучука, в сушильном агрегате, состоящем из 2-х или более червячных машин, в последней из которых происходит термическое выпаривание влаги, с подачей в зону сжатия этой машины азота высокого давления, отличающийся тем, что превышение давления азота над давлением в зоне сжатия составляет 2,0-5,0 МПа, а точка ввода азота находится в 35-50 см от фильерной плиты последней червячной машины.



 

Похожие патенты:

Изобретение описывает способ торрефакции биомассы в торрефакционном реакторе с получением обожженной биомассы и газов торрефакции, в котором в торрефакционный реактор в первом положении реактора подают содержащий кислород газ так, чтобы кислород вступил в реакцию с компонентами газов торрефакции с выделением теплоты, и в котором газы торрефакции отводят из торрефакционного реактора во втором положении торрефакционного реактора, и в котором первое положение расположено ниже по потоку от второго положения относительно направления движения биомассы в торрефакционном реакторе, так что газы торрефакции двигаются в торрефакционном реакторе в противоток движению биомассы, и при котором биомасса на входе в торрефакционный реактор имеет температуру от 30°С до 230°С.

Изобретение раскрывает способ торрефикации высушенной и нагретой биомассы, включающий в себя этап охлаждения упомянутой биомассы в течение реакции торрефикации в зоне торрефикации агрегата для торрефикации, так чтобы по меньшей мере частично нейтрализовать повышение температуры в зоне торрефикации, возникающее от экзотермических реакций торрефикации в зоне торрефикации, причем упомянутая биомасса является древесной биомассой из ели или эвкалипта.

Изобретение относится к сельскохозяйственному машиностроению, в частности к устройствам для сушки зерна. Устройство для сушки зерна содержит цилиндрический кожух, внешняя поверхность которого покрыта слоем теплоизолирующего материала, загрузочный бункер, выгрузное окно, соосно установленный внутри кожуха с возможностью вращения транспортирующий рабочий орган, нагревательные элементы, размещенные на внешней поверхности кожуха под слоем теплоизолирующего материала между загрузочным бункером и выгрузным окном, а также вентилятор.

Изобретение может быть использовано в нефтеперерабатывающей, нефтехимической, химической и газовой промышленности. Трубчатая сушилка - горизонтальный кожухотрубный аппарат включает корпус, теплообменные трубы, загрузочную и разгрузочную камеры, привод, штуцера для подвода и отвода сырья, продукта, теплоносителя.

Данное устройство для сушки/коксования состоит из множества труб, расположенных внутри сушильной камеры, с одного конца которых сформировано входное отверстие, а с другого конца - сформировано выходное отверстие, верхние и нижние концы труб соединены друг с другом для формирования единой цепи, внутри труб имеются вращаемые шнековые конвейеры, которые обеспечивают перемещение материала коксования в противоположном направлении по длине цепи в вертикальном направлении; горизонтальных труб, которые закреплены с соответствующим интервалом вдоль продольного направления множества труб со шнековыми конвейерами, которые являются горизонтальными газоотводными трубами, вертикальных труб, которые соединены с концами горизонтальных труб, и нижней накопительной трубы, которая расположена горизонтально в нижней части устройства, соединяет концы вертикальных труб и удаляет газ.

Изобретение относится к устройствам для теплообмена. .

Изобретение относится к устройствам для выпаривания жидкости, содержащейся в сыпучей продукции, посредством перегретого пара в качестве сушильного агента. .

Изобретение относится к сельскохозяйственному машиностроению, а именно к устройствам для сушки зерна. .

Изобретение относится к области переработки рисовой шелухи в диоксид кремния и может быть использовано для термообработки сыпучих материалов. .

Изобретение относится к молочной промышленности. Способ получения частично высушенного сырного порошка из сыра с содержанием воды от 22 до 60 мас.%, включающий стадии приведения исходного сыра в мелкоизмельченное состояние и его нагревание в потоке в виде тонкого турбулентного динамического слоя в контакте со стенкой, нагретой по меньшей мере до 80°С, с получением сырного порошка с содержанием влаги, меньшим или равным 20%; причем указанный способ целесообразно осуществлять с использованием турбосушилки (Т), включающей полый цилиндрический корпус (1), закрытый с противоположных концов торцевыми пластинами (2, 3) и снабженный нагревательной рубашкой (4), по меньшей мере с одним впускным отверстием (5) и по меньшей мере одним выпускным отверстием (6) и с лопастным ротором (7), закрепленным с возможностью вращения внутри указанного корпуса; и, возможно, дополнительной турбосушилки (Т'), по существу, идентичной вышеуказанной турбосушилке.

Изобретение относится к технике сушки материалов и может быть использовано в сельском хозяйстве, зерноперерабатывающей промышленности, а также в других отраслях промышленности.

Изобретение относится к технике сушки сыпучих зернообразных, продуктов. .

Изобретение относится к технологическому оборудованию, а именно к шнековым аппаратам, в которых осуществляется процесс тепломассообмена, например сушка или кристаллизация.

Изобретение относится к области металлургии, конкре тно к печам для термической обработки стружки, и может быть использовано для омистки поверхности стружки цветных и черных металлов от эмульсий и масел.

Способ и установка очистки природного газа от диоксида углерода и сероводорода с выделением указанных примесей в качестве новых видов сырьевых потоков могут быть использованы в газоперерабатывающей промышленности.
Наверх