Способ получения малосернистого сырья каталитического крекинга

Изобретение относится к способам получения малосернистого сырья каталитического крекинга. Описан способ получения малосернистого сырья каталитического крекинга, заключающийся в гидроочистке вакуумного газойля с высоким содержанием серы в присутствии гетерогенного катализатора, где используемый катализатор содержит, мас. %: [Co(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 – остальное. Технический результат - получение сырья каталитического крекинга, содержащего менее 300 ppm серы при гидроочистке вакуумного газойля с высоким содержанием серы. 4 з.п. ф-лы, 1 табл., 7 пр.

 

Изобретение относится к способам получения нефтепродуктов с низким содержанием серы, в частности к процессу гидроочистки вакуумного газойля с получением малосернистого сырья каталитического крекинга.

Получение моторных топлив с низким содержанием серы является одной из наиболее важных задач современной нефтепереработки. В настоящее время Россия переходит к производству бензинов, соответствующих стандарту Евро-5 и содержащих не более 10 ppm серы. Товарные бензины получают смешением бензиновых фракций различных процессов, при этом основное количество серы поступает в компаундированные бензины вместе с бензином каталитического крекинга. Содержание серы в бензинах каталитического крекинга напрямую зависит от ее содержания в исходном сырье каталитического крекинга - гидроочищенных вакуумных газойлях. Соответственно, для получения малосернистых бензинов каталитического крекинга, пригодных для получения компаундированных бензинов Евро-5, необходимо, чтобы содержание серы в сырье каталитического крекинга не превышало 300 ppm [Капустин В.М., Гуреев А.А. Технологии переработки нефти. Часть 2. Деструктивные процессы. Москва, КолосС, 2007, 334 с.]. В связи с этим чрезвычайно актуальной задачей является создание новых процессов получения малосернистых нефтепродуктов, позволяющих далее получать моторные топлива, по содержанию серы соответствующие стандарту Евро-5.

Существующие заводские установки гидроочистки работают в достаточно узком интервале температур, расходов и давлений. Так, для глубокой гидроочистки вакуумных газойлей используется давление 4,5-9,0 МПа, расход сырья 1,0-1,5 ч-1, объемное отношение водород/сырье 400-600 нм33. Стартовая температура процесса гидроочистки не может выбираться в широких пределах и должна быть как можно ниже, поскольку от нее зависит скорость дезактивации и межрегенерационный пробег катализатора. Таким образом, основным инструментом, который позволяет изменять количество серы в получаемых продуктах без существенных изменений условий процесса гидроочистки и реконструкции установок, являются характеристики используемых катализаторов, из которых наиболее важной является каталитическая активность.

Известны различные способы гидроочистки углеводородного сырья, в том числе и сложные многоступенчатые процессы с высоким давлением водородсодержащего газа или процессы с многослойной загрузкой различных катализаторов, однако основным недостатком для них является высокое остаточное содержание серы в получаемых продуктах, обусловленное низкой активностью используемых катализаторов.

Чаще всего процессы гидрообессеривания нефтяного сырья проводят в присутствии катализаторов, содержащих оксиды кобальта и молибдена, нанесенные на оксид алюминия. Так, известен способ каталитической гидроочистки нефтяного сырья [РФ 2192923, B01J 27/188, C10G 45/08, 20.10.2002]. Процесс проводят при 200-480°С при давлении 0,5-20 МПа при расходе сырья 0,05-20 ч-1 и расходе водорода 100-3000 л/л сырья, при этом используют катализатор на основе оксида алюминия, который содержит в пересчете на содержание оксида, мас. %: 2-10 оксида кобальта СоО, 10-30 оксида молибдена МоО3 и 4-10 оксида фосфора Р2О5, с площадью поверхности по методу БЭТ в интервале 100-300 м2/г и средним диаметром пор в интервале 8-11 нм.

Известен способ гидрообессеривания нефтяного сырья [Заявка РФ №2002124681, C10G 45/08, B01J 23/887, 2004.05.10], где процесс гидроочистки ведут при температуре 310-340°С, давлении 3,0-5,0 МПа, при соотношении водород/сырье 300-500 нм33 и объемной скорости подачи сырья 1,0-4,0 ч-1, при этом используют катализатор, содержащий в своем составе оксид кобальта, оксид молибдена и оксид алюминия, отличающийся тем, что он имеет соотношение компонентов, мас. %: оксид кобальта 3,0-9,0, оксид молибдена 10,0-24,0 мас. %, оксид алюминия остальное, удельную поверхность 160-250 м2/г, механическую прочность на раздавливание 0,6-0,8 кг/мм2.

Известен процесс гидроочистки углеводородного сырья [РФ №2402380, B01J 21/02, C10G 45/08, 27.10.2010], заключающийся в превращении нефтяных дистиллятов с высоким содержанием серы при температуре 320-400°С, давлении 0,5-10 МПа, весовом расходе сырья 0,5-5 ч-1, объемном отношении водород/сырье 100-1000 м33 в присутствии гетерогенного катализатора, содержащего биметаллическое комплексное соединение [М(Н2O)х(L)y]2[Мо4O116Н5O7)2], где: L - частично депротонированная форма лимонной кислоты C6H6O7; x=0 или 2; y=0 или 1; М - Со2+ и/или Ni2, в количестве 30-45 мас. %, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: МоO3 - 14,0-23,0; СоО и/или NiO - 3,6-6,0; В2O3 - 0,6-2,6 Al2O3 - остальное, и имеющего объем пор 0,3-0,7 мл/г, удельную поверхность 200-350 м2/г и средний диаметр пор 9-13 нм.

Основным недостатком вышеописанных способов проведения процесса гидроочистки является высокое содержание серы в получаемых продуктах.

Наиболее близким по своей технической сущности и достигаемому эффекту к заявляемому способу получения малосернистого сырья каталитического крекинга является способ гидроочистки углеводородного сырья, описанный в [Пат. РФ №2472585, B01J 23/882, 20.01.2013], согласно которому гидроочистку вакуумного газойля проводят при 380°С, давлении 5,0 МПа, массовом расходе вакуумного газойля 1 ч-1, объемном отношении водород/сырье 400 в присутствии катализатора, который содержит, мас. %: Мо - 8,0-15,0; Со или Ni - 2,0-5,0; S - 5,0-15,0; В - 0,5-2,0; С - 0,5-7,0; Al2O3 - остальное, при этом носитель содержит, мас. %: В - 0,7-3,0; Al2O3 – остальное, и имеет удельную поверхность 170-300 м2/г, объем пор 0,5-0,95 см3/г и средний диаметр пор 7-22 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, имеющие механическую прочность 2,0-2,5 кг/мм.

Общим недостатком для прототипа и всех вышеперечисленных процессов гидроочистки является то, что с их использованием не удается достичь остаточного содержания серы в гидроочищенных вакуумных газойлях ниже 300 ppm.

Изобретение решает задачу создания улучшенного способа получения малосернистого сырья каталитического крекинга.

Технический результат - использование катализатора гидроочистки, который имеет оптимальный химический состав, - обеспечивает получение сырья каталитического крекинга, содержащего менее 300 ppm серы из вакуумного газойля с концом кипения до 560°С с высоким содержанием серы при значительно меньшей температуре процесса гидроочистки, чем в случае использования прототипа.

Задача решается способом получения малосернистого сырья каталитического крекинга, заключающимся в проведении гидроочистки вакуумного газойля с концом кипения до 560°С, содержащего до 3,0% серы при температуре 340-400°С, давлении 4,5-9,0 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 400-800 м33 в присутствии катализатора, содержащего, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] 33,0-43,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; что в случае сульфидирования по известным методикам приводит к получению катализатора, который содержит, мас. %: Мо - 10,0-14,0; Со - 3,0-4,3; S - 6,7-9,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

Основным отличительным признаком предлагаемого способа получения малосернистого сырья каталитического крекинга по сравнению с прототипом является то, что процесс гидроочистки проводят при температуре 340-400°С, давлении 4,5-9,0 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 400-800 м33 в присутствии катализатора, который содержит, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] 33,0-43,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Такой химический состав катализатора способствует дальнейшему селективному формированию наиболее активной в целевых реакциях гидроочистки CoMoS фазы тип II, что обеспечивает получение малосернистого сырья каталитического крекинга при пониженной температуре процесса гидроочистки.

Вторым отличительным признаком является то, что используемый катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 7-12 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, при этом входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Такие размеры частиц бората алюминия Al3BO6 со структурой норбергита приводят к получению носителя и катализатора, текстурные характеристики которого обеспечивают доступ всех подлежащих превращению молекул сырья к активному компоненту.

Технический результат предлагаемого способа получения малосернистого сырья каталитического крекинга складывается из следующих составляющих:

1. Наличие в составе используемого при гидроочистке катализатора бората алюминия Al3BO6 со структурой норбергита и биметаллического комплексного соединения [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] способствует селективному образованию наиболее активного в реакциях гидроочистки сульфидного компонента, CoMoS фазы тип II.

2. Наличие в составе используемого при гидроочистке катализатора бората алюминия Al3BO6 со структурой норбергита в виде частиц с размерами от 10 до 200 нм обеспечивает совокупность текстурных характеристик катализатора, способствующих хорошему диспергированию активного компонента и доступу всех подлежащих превращению молекул сырья к активному компоненту.

3. Наличие в составе используемого при гидроочистке катализатора бората алюминия Al3BO6 со структурой норбергита и биметаллического комплексного соединения [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] в заявляемых концентрациях обеспечивает оптимальные текстурные характеристики катализатора и оптимальную поверхностную концентрацию сульфидного активного компонента. Выход концентраций компонентов катализатора за заявляемые рамки приведет к снижению активности катализатора.

4. Использование в процессе гидроочистки улучшенного катализатора позволяет получать сырье каталитического крекинга, содержащее менее 300 ppm серы при пониженной температуре процесса гидроочистки.

Описание предлагаемого технического решения.

Гидроочистку вакуумного газойля с концом кипения до 560°С, содержащего до 3,0% серы, проводят при температуре 340-400°С, давлении 4,5-9,0 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 400-800 м33 в присутствии катализатора, содержащего, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] 33,0-43,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; что в случае сульфидирования по известным методикам приводит к получению катализатора, который содержит, мас. %: Mo - 10,0-14,0; Co - 3,0-4,3; S - 6,7-9,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 7-12 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, при этом входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Согласно известному решению [Патент РФ №2472585].

К 100 г порошка гидроксида алюминия AlOOH, имеющего структуру бемита с размером кристаллов 60-80 , со средним размером агломератов 40-50 мкм, содержащего примеси в количестве, мас. %, не более: Na2О - 0,002; Fe2O3 - 0,01; SiO2 - 0,015 при непрерывном перемешивании в смесителе с Z-образными лопастями добавляют 2 мл концентрированной азотной кислоты, 70 мл водного раствора, содержащего 5 г борной кислоты Н3ВО3 и 3 г этиленгликоля. Весовые отношения компонентов смеси - гидроксид алюминия : вода : азотная кислота : борная кислота : этиленгликоль - 1:0,7:0,02:0,05:0,03.

Образовавшуюся пасту перемешивают при комнатной температуре в течение 40 мин, затем формуют через фильеру с сечением в виде трилистника с диаметром описанной окружности 1,5 мм при давлении 6,0 МПа. Полученные гранулы сушат в термошкафу при 110°С 2 ч, затем прокаливают при 550°С 4 ч.

В результате получают носитель, содержащий В - 1,0 мас. %, Al2O3 - остальное; имеющий удельную поверхность 250 м2/г, объем пор 0,95 см3/г, средний диаметр пор 13 нм, представляющий собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,4 мм, длиной до 20 мм, имеющие механическую прочность 2,5 кг/мм.

Далее в растворе синтезируют биметаллическое соединение состава [Со(Н2O)2]2[Мо4O116Н5O7)2], для чего в 70 мл дистиллированной воды при перемешивании последовательно растворяют 40,5 г лимонной кислоты C6H8O7; 71,0 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 17,3 г гидроксида кобальта Со(ОН)2. К полученному раствору добавляют 15 мл этиленгликоля и добавлением воды объем раствора доводят до 160 мл.

20 г носителя пропитывают по влагоемкости 16 мл водного раствора [Со(Н2O)2]2[Мо4O116Н5O7)2] и этиленгликоля. Катализатор сушат на воздухе при 100°С и сульфидируют по одной из известных методик. В данном случае катализатор сульфидирован прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас. % сульфидирующего агента - диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье = 300 по следующей программе:

- сушка катализатора в реакторе гидроочистки в токе водорода при 140°С в течении 2 ч;

- смачивание катализатора прямогонной дизельной фракцией в течение 2 ч;

- подача сульфидирующей смеси и увеличение температуры до 240°С со скоростью подъема температуры 25°С/ч;

- сульфидирование при температуре 240°С в течение 8 ч (низкотемпературная стадия);

- увеличение температуры реактора до 340° С со скоростью подъема температуры 25°С/ч;

сульфидирование при температуре 340°С в течение 8 ч

Полученный катализатор содержит, мас. %: Мо - 13,0; Со - 3,4; S - 9,6; В - 0,5; С - 6,7; Al2O3 - остальное.

Гидроочистку сырья каталитического крекинга проводят при 370°С, давлении 9,0 МПа, массовом расходе вакуумного газойля 1 ч-1, объемном отношении водород/сырье 500. В качестве сырья используют вакуумный газойль, содержащий 3,0% серы, 1200 ppm азота, имеющий конец кипения 560°С.

Результаты гидроочистки приведены в таблице.

Примеры 2-7 иллюстрируют предлагаемое техническое решение.

Пример 2.

Сначала готовят носитель, для чего 150 г продукта термической активации гидраргиллита измельчают на планетарной мельнице до частиц размером в пределах 20-50 мкм. Далее порошок гидратируют при перемешивании и нагревании в растворе азотной кислоты с концентрацией 0,5%. Затем суспензию на воронке с бумажным фильтром промывают дистиллированной водой до остаточного содержания натрия в порошке не более 0,03%. Отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 2,3 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Автоклав нагревают до 150°С и выдерживают 12 ч. Далее автоклав охлаждают до комнатной температуры и проводят сушку полученной суспензии на распылительной сушилке при температуре воздуха на входе в сушилку 155°С и непрерывном перемешивании суспензии, высушенный порошок собирают в приемной емкости сушилки. Навеску 150 г порошка помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5%-ным водным раствором аммиака, после чего экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде трилистника с диаметром описанной окружности 1,6 мм. Сформованные гранулы сушат при температуре 120°С и прокаливают при температуре 550°С. В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее готовят раствор биметаллического комплексного соединения [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 73,3 г лимонной кислоты С6Н8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 30,1 г кобальта (II) углекислого основного водного СоСО3⋅mCo(OH)2⋅nН2О. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл. 100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] при 20°С в течение 60 минут. Затем катализатор сушат на воздухе при 100°С.

Катализатор содержит, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] - 38,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Со - 3,85; S - 8,3; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3ВО6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Пример 3.

Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 5,98 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.

В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] из примера 2. Затем катализатор сушат на воздухе при 100°С.

Катализатор содержит, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] - 38,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Со - 3,85; S - 8,3; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al2BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Пример 4.

Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 14,63 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.

В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

100 г полученного носителя пропитывают по влагоемкости 66 мл раствора биметаллического комплексного соединения [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] из примера 2. Затем катализатор сушат на воздухе при 200°С.

Катализатор содержит, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] - 38,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Со - 3,85; S - 8,3; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Пример 5.

Готовят носитель так же, как в примере 3.

Готовят раствор биметаллического комплексного соединения [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 63,27 г лимонной кислоты C6H8O7; 77,58 г парамолибдата аммония (NH4)6Мо7O24×4Н2O и 26,0 г кобальта (II) углекислого основного водного СоСО3⋅mСо(ОН)2⋅nH2O. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл. 100 г полученного носителя при комнатной температуре пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2]. Затем катализатор сушат на воздухе при 120°С.

Полученный катализатор содержит, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] - 32,7; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 180 м2/г, объем пор 0,65 см3/г, средний диаметр пор 15 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас. %: Мо - 10,0; Со - 3,0; S - 6,7; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Пример 6.

Готовят носитель так же, как в примере 3, с той разницей что формовочную пасту экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде круга диаметром 1,0 мм.

Готовят раствор биметаллического комплексного соединения [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2], для чего в 100 мл дистиллированной воды при нагревании до 80°С и перемешивании последовательно растворяют 85,3 г лимонной кислоты С6Н8O7; 104,53 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 35,05 г кобальта (II) углекислого основного водного СоСО3⋅mCo(OH)2⋅nН2О. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл.

Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 80°С, в колбу приливают 200 мл раствора биметаллического комплексного соединения [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2], также нагретого до 80°С. Пропитку продолжают в течение 20 минут при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 200°С.

Катализатор содержит, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] 42,95; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 130 м2/г, объем пор 0,35 см3/г, средний диаметр пор 10 нм и представляет собой частицы с сечением в виде круга с диаметром 1,0 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас. %: Мо - 14,0; Со - 4,3; S - 9,4; носитель -остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Пример 7.

Готовят носитель так же, как в примере 3, с той разницей что формовочную пасту экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде четырехлистника диаметром 1,6 мм.

Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 30°С, в колбу приливают 133 мл раствора биметаллического комплексного соединения [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] из примера 5, также нагретого до 30°С. Пропитку продолжают в течение 60 минут при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 120°С.

Катализатор содержит, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] - 35,9; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 175 м2/г, объем пор 0,6 см3/г, средний диаметр пор 14 нм и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас. %: Мо - 11,7; Со - 3,6; S - 7,9; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Таким образом, как видно из приведенных примеров, предлагаемый способ получения малосернистого сырья каталитического крекинга позволяет при равных условиях процесса достичь значительно меньшего остаточного содержания серы в продуктах.

1. Способ получения малосернистого сырья каталитического крекинга, заключающийся в гидроочистке вакуумного газойля с высоким содержанием серы в присутствии гетерогенного катализатора, отличающийся тем, что используемый катализатор содержит, мас. %: [Co(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

2. Способ по п. 1, отличающийся тем, что используемый катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 7-12 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, при этом входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

3. Способ по п. 1, отличающийся тем, что используемый катализатор перед проведением гидроочистки сульфидируют с получением катализатора, который содержит, мас. %: Мо - 10,0-14,0; Со - 3,0-4,3; S - 6,7-9,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

4. Способ по п. 1, отличающийся тем, что гидроочистку проводят при температуре 340-400°С, давлении 4,5-9,0 МПа, расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 400-800 нм33.

5. Способ по п. 1, отличающийся тем, что в качестве исходного сырья используют вакуумный газойль с концом кипения до 560°С, содержащий до 3,0% серы.



 

Похожие патенты:

Изобретение относится к способам приготовления катализаторов для получения нефтяных дистиллятов с низким содержанием серы. Описан способ приготовления катализатора, заключающийся в пропитке носителя, который содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; водным раствором биметаллического комплексного соединения [Со(Н2O)2(С6Н5O7)]2[Мо4O11(С6Н5O7)2] с последующей сушкой.

Изобретение относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы. Описан катализатор, содержащий, мас.

Изобретение относится к способу гидрокрекинга углеводородного сырья с получением низкосернистых средних дистиллятов. Изобретение касается способа гидрокрекинга, в котором осуществляют превращение высококипящего углеводородного сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород сырье 800-2000 нм3/м3 в присутствии катализатора, включающего никель и вольфрам в форме биметаллических комплексных соединений Ni(NH4)x[HyW2O5(C6H5O7)2], где: С6Н5O7 - частично депротонированная форма лимонной кислоты; х=0, 1 или 2; y=2-х; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Аl2О3.

Изобретение относится к катализаторам гидрокрекинга углеводородного сырья, ориентированным на получение низкосернистых среднедистиллятных фракций. Описан катализатор, включающий в свой состав никель, вольфрам, алюминий и кремний, при этом он содержит никель и вольфрам в форме биметаллических комплексных соединений Ni(NH4)x[HyW2O5(C6H5O7)2], где C6H5O7 - частично депротонированная форма лимонной кислоты; x=0, 1 или 2; y=2-x; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3.

Изобретение относится к способам гидроочистки дизельных топлив, основанным на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390°C, давлении 3-9 МПа, объемном расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-600 м3/м3 в присутствии регенерированного катализатора, имеющего объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м2/г, средний диаметр пор 6-15 нм, включающего в свой состав молибден, кобальт, серу и носитель, при этом молибден и кобальт содержатся в катализаторе в форме смеси комплексных соединений Co(C6H6O7), H4[Mo4(C6H5O7)2O11], H3[Co(OH)6Mo6O18], сера содержится в форме сульфат-аниона SO42-, в следующих концентрациях, мас.

Изобретение относится к регенерированному катализатору гидроочистки дизельного топлива, который имеет объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м2/г, средний диаметр пор 6-15 нм, включающий в свой состав молибден, кобальт, серу и носитель.

Изобретение относится к каталитической химии, в частности к приготовлению катализаторов гидроочистки нефтяного сырья. Катализатор включает носитель из композиции оксидов алюминия и молибдена и содержит мас.

Изобретение относится к самоактивирующемуся катализатору гидропереработки для обработки тяжелого углеводородного сырья. При этом указанный катализатор содержит прокаленную частицу, включающую гомогенизированную смесь, полученную гомогенизацией порошка неорганического оксида, порошка триоксида молибдена и соединения никеля, а затем формованием указанной гомогенизированной смеси в частицу, которую прокаливают для получения в результате указанной прокаленной частицы, причем упомянутый неорганический оксид выбирают из группы, которую составляют оксид алюминия, диоксид кремния и двойной оксид алюминия и кремния, при этом указанная прокаленная частица включает молибден, который присутствует в количестве, составляющем от 1 до 10% масс.

Изобретение относится к области нефтепереработки, в частности к разработке катализатора гидроизодепарафинизации среднедистиллятных углеводородных фракций, а именно, смесевого сырья нефтяного и растительного происхождения, с получением базовых компонентов авиационных керосинов и дизельных топлив для арктических условий.

Группа изобретений относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°C.

Изобретение относится к способу гидрокрекинга углеводородного сырья с получением низкосернистых средних дистиллятов. Изобретение касается способа гидрокрекинга, в котором осуществляют превращение высококипящего углеводородного сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород сырье 800-2000 нм3/м3 в присутствии катализатора, включающего никель и вольфрам в форме биметаллических комплексных соединений Ni(NH4)x[HyW2O5(C6H5O7)2], где: С6Н5O7 - частично депротонированная форма лимонной кислоты; х=0, 1 или 2; y=2-х; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Аl2О3.

Изобретение относится к катализаторам гидрокрекинга углеводородного сырья, ориентированным на получение низкосернистых среднедистиллятных фракций. Описан катализатор, включающий в свой состав никель, вольфрам, алюминий и кремний, при этом он содержит никель и вольфрам в форме биметаллических комплексных соединений Ni(NH4)x[HyW2O5(C6H5O7)2], где C6H5O7 - частично депротонированная форма лимонной кислоты; x=0, 1 или 2; y=2-x; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3.

Изобретение относится к гомогенным катализаторам окисления диэтилдитиокарбамата натрия на основе тетра-4-(4'-карбоксифениламино)фталоцианина кобальта(II), модифицированного нитрогруппами или фрагментами аминобензойной кислоты общей формулы: где X = NH.

Изобретение относится к способам гидроочистки дизельных топлив, основанным на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390°C, давлении 3-9 МПа, объемном расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-600 м3/м3 в присутствии регенерированного катализатора, имеющего объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м2/г, средний диаметр пор 6-15 нм, включающего в свой состав молибден, кобальт, серу и носитель, при этом молибден и кобальт содержатся в катализаторе в форме смеси комплексных соединений Co(C6H6O7), H4[Mo4(C6H5O7)2O11], H3[Co(OH)6Mo6O18], сера содержится в форме сульфат-аниона SO42-, в следующих концентрациях, мас.

Изобретение относится к способу получения анилиновых комплексов палладия общей формулы [(acac)Pd(L)2]BF4, где асас - ацетилацетонат, L - замещенные анилины, такие как 2,6-диизопропиланилин, 2,6-диметиланилин, орто-метиланилин, пара-метиланилин.

Изобретение относится к области нефтехимии, а именно к способу получения углеводородов, пригодных для использования в качестве компонентов дизельного топлива, заключающемуся в декарбонилировании/декарбоксилировании стеариновой кислоты в растворителе в атмосфере водорода при 350-400°С и давлении водорода 0,1-5 МПа в присутствии гетерогенного катализатора, представляющего собой октанатриевую соль 2,3,9,10,16,17,23,24-октакарбоксифталоцианина кобальта, нанесенную на оксид алюминия.

Изобретение относится к способу получения металлоорганических каркасных соединений с октакарбоксифталоцианинатом металла в качестве основной структурной единицы.

Изобретение относится к композиции катализатора реакций полиприсоединения или поликонденсации на основе титан-оксо-хелата. Композиция содержит (i) по меньшей мере, одно вещество формулы I где R1 и R2 и R3 вместе с С-атомом, к которому они присоединены, образуют фенильную группу, которая может быть незамещенной или замещенной одним, двумя либо тремя С1-С4алкилами, OR13 или NR13R14; R10 и R11 и R12 вместе с С-атомом, к которому они присоединены, образуют фенильную группу, которая может быть незамещенной или замещенной одним, двумя либо тремя С1-С4алкилами, OR13 или NR13R14; R4, R5, R6, R7, R8, R9, независимо друг от друга представляют собой водород, галоген либо С1-С4алкил; при условии что только один из R4, R5 и R6 в группе и только один из R7, R8 и R9 в группе может быть водородом;или R4, R5 и R6 и R7, R8 и R9 вместе с С-атомом, к которому они присоединены, образуют фенильную группу; или R4 и R5 и R7 и R8 вместе с С-атомом, к которому они присоединены, образуют циклогексильное кольцо; R13 и R14 независимо друг от друга представляют собой С1-С4алкил; (ii) по меньшей мере, один хелатный лиганд общей формулы IIa, IIb или IIc в которомR1, R2 и R3 независимо друг от друга представляют собой водород, галоген или С1-С4алкил; или R1 и R2 и R3 вместе с С-атомом, к которому они присоединены, образуют фенильную группу; R4, R5 и R6 независимо друг от друга представляют собой водород, галоген или С1-С4алкил; или R4 и R5 и R6 вместе с С-атомом, к которому они присоединены, образуют фенильную группу.

Изобретение относится к композиции катализатора для гидрирования. Композиция содержит компоненты (А), (В), (С) и (D), где массовое отношение (D) к (А) ((D)/(А)) находится в пределах от 0,01 до 2,00, и где массовое отношение (С) к (А) ((С)/(А)) находится в пределах от 0,3 до 8,0.

Изобретение относится к композиции катализатора для гидрирования. Композиция содержит компоненты (А), (В), (С) и (D), где массовое отношение (С) к (А) ((С)/(А)) находится в пределах от 0,1 до 4,0 и где массовое отношение (D) к (А) ((D)/(А)) находится в пределах от 0,01 до 1,00.

Изобретение относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы. Описан катализатор, содержащий, мас.
Наверх