Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок газоперекачивающих компрессорных станций магистральных газопроводов. Из указанных газов отбирают диоксид углерода, который охлаждают в теплообменнике газотурбинной установки, затем гидрируют на медьсодержащем катализаторе в реакторе для синтеза метанола. Водород для гидрирования диоксида углерода получают путем высокотемпературного электролиза воды на кислородопроводящей мембране. Требуемую температуру электролиза поддерживают за счет тепла, выделяющегося в теплообменнике газотурбинной установки при охлаждении диоксида углерода. Кислород, отделяемый попутно при помощи мембраны, добавляют в природный газ, направляемый в качестве топлива для газотурбинной установки. Использование данного способа обеспечивает упрощение утилизации углеродсодержащих отходов и снижение стоимости метанола. 1 з.п. ф-лы, 1 ил.

 

Предлагаемое изобретение относится к способам утилизации углеродсодержащих отходов, конкретно, отработавших газов газотурбинных установок (далее - ГТУ), использующих в качестве топлива природный газ (метан).

Известны способы нейтрализации отработавших газов ГТУ (см., например, патент РФ №2334546 на изобретение «Способ очистки выхлопных газов газотурбинных установок от вредных примесей»). В указанном способе выхлопной газ из ГТУ очищают от оксида углерода воздействием плазмы стриммерного разряда. В этом способе дожигается моноксид углерода (CO), а также отмывается NOx раствором карбамида. При этом вредные выбросы CO2 не удаляются и не связываются, а поступают в атмосферу.

Известен также способ утилизации выхлопных газов ГТУ, которая оборудована котлом-утилизатором и аппаратом для получения жидкой углекислоты из дымовых газов (см. патент РФ на полезную модель №61814). Данная полезная модель решает задачу повышения коэффициента использования тепловой энергии от сжигания топлива. Углекислота не связывается, а накапливается в жидком виде, после чего она попадает в атмосферу при использовании ее в качестве технического газа (например, при сварке в среде защитного газа CO2). Т.е. эмиссии CO2 в окружающую среду не снижаются.

В указанных способах выделяется, но не утилизируется ценный (способный к извлечению выгоды) углеродсодержащий компонент выхлопных газов ГТУ - диоксид углерода, содержание которого может доходить до 30%, в зависимости от месторождения природного газа.

Известен способ получения метанола, в котором оксид углерода нагревают, сжимают и смешивают с метаном (см., например, патент РФ на изобретение №2568113). Недостатком данного способа является то, что для получения метанола, который затем применяют как моторное топливо, используют метан, который добывают с целью использования в качестве топлива. При этом часть метана требуется сжигать для получения тепла, необходимого для синтеза CO и метанола. Указанный недостаток повышает стоимость полученного метанола.

Наиболее близкой к предлагаемому изобретению является заявка на изобретение №2011141165/13 «Способ утилизации углеродсодержащих отходов», опубл. 2013 г. Указанный способ включает термическую газификацию углеродсодержащих отходов с получением синтез газа, охлаждение синтез газа, каталитический синтез метанола на основе синтез газа. К недостаткам прототипа относится то, что для обеспечения термической газификации требуется добавлять в отходы горючие добавки с высокой калорийностью (не менее 10 МДж/кг). Кроме того, для обеспечения нужного соотношения водорода к оксиду углерода состав синтез газа необходимо корректировать путем паровой конверсии части оксида углерода в диоксид углерода. Указанные недостатки усложняют технологию получения метанола из отходов, повышают стоимость конечного продукта.

Технической задачей, на решение которой направлено заявляемое изобретение, является упрощение способа переработки углеродсодержащих отходов в метанол, снижение стоимости конечного продукта, а также исключение сжигания дополнительных объемов первичного энергоносителя.

Технический результат достигается тем, что в способе утилизации углеродсодержащих отходов, включающем отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты, в качестве отходов используют отработавшие газы из газотурбинных установок газоперекачивающих компрессорных станций (далее - ГКС) магистральных газопроводов, из указанных газов отбирают диоксид углерода, который охлаждают в теплообменнике газотурбинной установки, затем гидрируют на медьсодержащем катализаторе в реакторе для синтеза метанола, причем водород для гидрирования диоксида углерода получают путем высокотемпературного электролиза воды на кислородпроводящей мембране, требуемую температуру электролиза поддерживают за счет тепла, выделяющегося в теплообменнике газотурбинной установки при охлаждении диоксида углерода, при этом кислород, отделяемый попутно при помощи указанной мембраны, добавляют в природный газ, направляемый в качестве топлива для газотурбинной установки.

Кроме того, в указанном способе для синтеза метанола применяется медь-цинк-алюминиевый катализатор состава Cu-ZnO-Al2O3.

Предлагаемый способ осуществляется следующим образом. Синтез метанола в предлагаемом способе основан на процессе каталитического гидрирования диоксида углерода CO2 до получения метанола СН3ОН. Основная реакция, проходящая в процессе синтеза метанола, описывается уравнением .

Из уровня техники известно, что если синтез-газ содержит значительные концентрации CO2, то синтез метанола осуществляется главным образом гидрированием СО2, в то время как CO участвует в основном в реакции паровой конверсии CO. Катализаторы синтеза метанола из углекислого газа известны. В данном синтезе проявляют активность те же катализаторы, что и в процессе получения метанола из синтез-газа.

Катализатор CuO-ZnO-Al2O3 является достаточно распространенным катализатором синтеза метанола (далее - КСМ). Каталитическая активность данного катализатора зависит от соотношения Cu/Zn/Al, а также от условий его получения (количественный состав катализатора является предметом ноу-хау заявителя).

Проверка предлагаемого способа проводилась на экспериментальной проточной установке. Скорость подачи реагентов контролировалась регуляторами массового расхода Mini CORI-FLOW (Bronkhorst). Поданная в установку смесь реагентов направлялась в снабженный подогревателем реактор, содержащий слой катализатора CuO-ZnO-Al2O3. Реактор соединен с системой разделения продуктов синтеза, включающей холодильник для конденсации полученного метанола. В установке была проведена опытная проверка предлагаемого к патентованию способа. Для синтеза метанола из диоксида углерода в установку в течение часа подавали азот и водород со скоростью 5 г/ч и 0.3 г/ч соответственно, одновременно поднимая температуру в реакторе, содержащем катализатор, до 250°C для восстановления CuO в катализаторе до активных медных центров. Затем поднимали давление в реакторе до 50 атм путем подачи водорода и диоксида углерода из баллонов со скоростью 0.85 г/ч и 5 г/ч соответственно (молярное соотношение 3.7:1). Синтез метанола проводили в течение трех часов при температуре в реакторе 250°C. Выходящую из установки смесь анализировали на газовом хроматографе Agilent 7890А (см. чертеж). Данные газовой хроматографии свидетельствуют об эффективности используемого катализатора. Метанол конденсировали при комнатной температуре на ледяной бане. Результаты экспериментальной проверки предлагаемого способа подтвердили правильность выбранных технических решений.

Предлагаемый способ имеет ряд преимуществ по сравнению с прототипом. В предлагаемом способе углеродсодержащую компоненту (диоксид углерода) отбирают непосредственно из горячих отработавших газов ГТУ ГКС. Водород получают путем электролиза воды, нагретой теплом раскаленных отработавших газов. Часть тепла используют для подогрева реактора при синтезе. «Попутный» кислород добавляют в «моторный» природный газ, повышая эффективность его сжигания в ГТУ. Таким образом, в предлагаемом способе используют «даровые» углеродсодержащие отходы и «бросовое» тепло отработавших газов из ГТУ ГКС, что является неочевидным в технологии утилизации CO2. При этом синтез метанола упрощается за счет гидрирования «дарового» диоксида углерода, что снижает стоимость конечного продукта.

В соответствии с описанной выше схемой разрабатывается сметно-проектная документация для строительства промышленной установки для переработки диоксида углерода из отработавших газов ГТУ в метанол.

1. Способ утилизации углеродсодержащих отходов, включающий отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты, отличающийся тем, что в качестве отходов используют отработавшие газы из газотурбинных установок газоперекачивающих компрессорных станций магистральных газопроводов, из указанных газов отбирают диоксид углерода, который охлаждают в теплообменнике газотурбинной установки, затем гидрируют на медьсодержащем катализаторе в реакторе для синтеза метанола, причем водород для гидрирования диоксида углерода получают путем высокотемпературного электролиза воды на кислородпроводящей мембране, требуемую температуру электролиза поддерживают за счет тепла, выделяющегося в теплообменнике газотурбинной установки при охлаждении диоксида углерода, при этом кислород, отделяемый попутно при помощи указанной мембраны, добавляют в природный газ, направляемый в качестве топлива для газотурбинной установки.

2. Способ утилизации углеродсодержащих отходов по п. 1, отличающийся тем, что для синтеза метанола применяют медь-цинк-алюминиевый катализатор состава Cu-ZnO-Al2O3.



 

Похожие патенты:

Изобретение может быть использовано в химической промышленности. Способ переработки диборидтитанового материала включает хлорирование диборидтитанового материала газообразным хлором с получением титансодержащего продукта и борсодержащего продукта.

Изобретение направлено на утилизацию и обезвреживание слабокарбонатных отходов флотационного обогащения вольфрамо-молибденовых руд без использования высокотемпературных технологий и сбора возгонов, с разделением на два основных продукта.

Группа изобретений относится к области биохимии. Предложен способ получения топлива из органического материала в подземном реакторе (варианты) и подземный реактор для применения в вышеуказанном способе (варианты).

Изобретение может быть использовано в химической технологии. Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства включает обработку фторсодержащих растворов гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция, который промывают водой.

Изобретение может быть использовано при утилизации отходов промышленного производства. Шлак производства феррованадия силикоалюминотермическим способом используют в качестве нейтрализующего материала для рекультивации закисленных почв терриконников.

Способ промышленной переработки органических отходов включает компостирование с использованием компостного червя. Субстрат органических отходов загружают в вермимодуль, где производят его увлажнение в растворе биогумуса, аэробное сбраживание, затем производят формирование массива органических отходов из вермимодулей, с последующим периодическим перекладыванием их и поворотом на 1200 для рыхления и аэрации субстрата, загрузку и выгонку компостного червя.

Способ утилизации нефтесодержащих отходов включает перемешивание нефтесодержащих отходов с обезвреживающей композицией, с последующим введением расчетного количества воды до образования однородного гидрофобного порошка.

Способ изготовления искусственного грунта заключается в перемешивании отходов бурения и/или выбуренной породы (ОБ), песка, цемента и растворимого силиката при следующем соотношении компонентов, % от исходного объема ОБ: отходы бурения и/или выбуренная порода с элементами бурового раствора 100; песок 10-90; цемент-3-30; силикат 2-15.

Способ сортировки мусора включает захват предметов с конвейера манипуляторами, которые управляются системами распознавания предметов, содержащими устройства сканирования, спектрометрирования и детектирования сортируемых предметов, путем сравнения их данных с образами в компьютерном программном обеспечении.

Изобретение относится к мусоросжигательным печам, предназначенным для сжигания отходов или низкосортных топлив. Техническим результатом является упрощение технологии подготовки материалов к переработке.

Изобретение относится к устройствам для термического обезвреживания опасных отходов, а также отсортированных органических компонентов твердых бытовых отходов, углерод - и углеводородсодержащих отходов, в том числе нефтешламов, отходов предприятий органического синтеза, иловых осадков канализационных очистных сооружений, отходов медицинских и лечебно-профилактических учреждений и прочих горючих, биоразлагаемых отходов. Технический результат - увеличение степени обезвреживания (массы обезвреженного остатка по отношению к исходной массе опасных отходов) до 90-95%, в уменьшении эксплуатационных расходов, в возможности комбинированной загрузки и переработки неоднородных по составу твердых, жидких и пастообразных отходов, в повышении производительности реакторов, в повышении энергоэффективности. Для этого устройство для термического обезвреживания опасных отходов, которое содержит последовательно связанные накопительный бункер, термолизный реактор с загрузочным питателем и нижним разгрузочным устройством, емкость для охлаждения (тушения) углеродного остатка термолиза отходов, бункер временного складирования углеродного остатка с системой пробоотбора для экспресс-анализа токсичности и установку плазменного дожига углеродного остатка с приемной шлаковой ванной, а также линию фракционирования с насадочным скруббером, адсорбером и колонными аппаратами для выделения жидкой углеводородной фракции продуктов термолиза и несконденсированного синтез-газа, используемого в качестве вторичного топлива в реакторе термолиза, систему водоочистки производственных сточных вод, трехстадийную очистку дымовых газов термолизного реактора. Реактор термолиза содержит по крайней мере одну камеру термолиза, система газоочистки содержит три стадии очистки с извлечением окислов тяжелых металлов, а система водоочистки включает в себя три ступени физико-химической очистки. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области переработки зольных отходов угольных тепловых электростанций с целью их утилизации в качестве, в частности, материалов для производства строительных изделий. В способе переработки золы-уноса угольных теплоэлектростанций, включающем высокотемпературную обработку в атмосфере азота, процесс ведут в присутствии мочевины при соотношении зола-унос:мочевина, равном 1:1, а высокотемпературную обработку осуществляют в потоке азотной плазмы при температуре плазмы 4000-6000°С при мощности плазмотрона 25 кВт и скорости потока плазмы 60-100 м/с с последующим охлаждением в атмосфере азота, подаваемого со скоростью 60-80 м/с, и разделением разнодисперсных фракций в условиях вихревого циклонирования и фильтрации на рукавном фильтре. Технический результат – утилизация отходов, расширение ассортимента полезных продуктов, получаемых в результате утилизации золы. 2 ил., 1 пр.
Изобретение относится к коммунальному хозяйству и может быть использовано для утилизации бытовых отходов и отходов сельскохозяйственного производства. Способ раздельной утилизации бытовых отходов включает разгрузку транспортных средств, разгрузку отходов из приемных бункеров на пластинчатый конвейер с ножами для вскрытия пакетов, выдувание потоком воздуха фрагментов легких составляющих, измельчение их, дробление крупногабаритных отходов, измельчение металлических составляющих, дробление крупногабаритных элементов отходов, измельчение металлических составляющих, сортировку раздробленных элементов на фракции, выделяют органические составляющие, которые перегоняют на технический спирт. Доукомплектовывают каждую квартиру емкостью с разовым пакетом для приема предметов, опасных для экологии, герметично закрываемыми пакетами для продуктов удовлетворения естественных надобностей и герметично закрываемыми пакетами для выбрасываемых продуктов питания. Контейнерные площадки доукомплектовывают, в дополнение к контейнерам для приема бытовых отходов, контейнерами для разовых пакетов для продуктов удовлетворения естественных надобностей и выбрасываемых остатков питания. Железнодорожную товарную станцию доукомплектовывают бункерами для приема разовых пакетов с опасными для экологии предметами, бункерами для приема разовых пакетов с продуктами удовлетворения естественных надобностей и разовыми пакетами с выбрасываемыми остатками продуктов питания и бункерами для приема остальных бытовых отходов, вагоны-мусоровозы доукомплектовывают нагревательными устройствами для предотвращения смерзания материалов при их транспортировке в зимнее время. По мере заполнения разового пакета для предметов, опасных для экологии, пакетов для продуктов удовлетворения естественных надобностей, пакетов для выбрасываемых продуктов питания, разового пакета для приема бытовых отходов их доставляют на контейнерную площадку и бросают в свободный контейнер. Содержимое одноименных контейнеров загружают в кузов автомобиля- мусоровоза и отвозят на железнодорожную станцию, где их разгружают в соответствующий бункер. Поезда - мусоровозы доставляют бытовые отходы на обогатительную установку, где осуществляют механическую сортировку и изготовление элементов для строительства малоэтажного жилья. В вагон другого поезда загружают предметы, опасные для экологии, и доставляют на предприятие по их утилизации, а в следующий поезд-мусоровоз загружают пакеты с органическими веществами для доставки на завод по переработке в технический спирт. Техническим результатом предлагаемого изобретения является устранение возможности загрязнения изготовляемых из бытовых отходов товаров веществами, опасными для экологии.

Способ для обезвреживания и утилизации массива бытовых отходов содержит бурение скважин в толще массива и установку в них вертикальных перфорированных отводящих труб, солнечный нагрев и увлажнение массива, размещенного под пирамидальными прозрачными колпаками, атмосферными осадками и питательной водой из канавок между колпаками, анаэробное брожение в толще массива с получением био–газа (метана), вывод его из колпаков и пор массива через вертикальные перфорированные отводящие трубы, соединенные через газопроводы с компрессором, который создает разрежение в полости колпаков и соединенных с ним на всасе газопроводов и сжимает на выходе биогаз, который под давлением поступает в трубное пространство воздушного холодильника, охлаждаемого наружным воздухом за счет естественной тяги, где происходит его охлаждение с конденсацией значительной части водяных паров и тяжелых углеводородов. Очищенный и охлажденный биогаз, состоящий в основном из CH4, поступает в газосборник, а конденсат, состоящий из воды и тяжелых углеводородов, направляют в накопительную емкость. Устройство для обезвреживания и утилизации массива бытовых отходов содержит участок массива на подошве полигона захоронения отходов, пробуренные в массиве по рассчитанной сетке N скважины, в которые вставлены отводящие вертикальные перфорированные трубы, соединенные с газопроводами, над скважинами установлены N прозрачных герметичных пирамидальных колпаков с зазорами между собой по горизонту шириной ∆1 и глубиной погружения в массив ∆2, образующими канавки. Каждый из вышеупомянутых колпаков изготовлен из каркаса, образованного нижней квадратной рамой, и верхнего кольца, соединенных между собой наклонными ребрами, покрытыми прозрачной оболочкой, причем в каждом колпаке через верхнее кольцо пропущены отводящие вертикальные перфорированные трубы, достигающие нижним торцом подошвы полигона, верхний торец которых вставлен в приемный патрубок рядового газового коллектора, соединенного с общим газовым коллектором, соединенного через всасывающий газопровод с расположенными за границей полигона компрессором, воздушным трубчатым холодильником и газосборником. Канавки пограничных колпаков соединены через распределительный лоток с питательным насосом. 2 н.п. ф-лы, 5 ил.

Изобретение относится к очистке воды в непроточных водоемах от нефтепродуктов и тяжелых металлов. Способ очистки непроточных водоемов от тяжелых металлов и нефтепродуктов включает использование сорбента, коагулянта и грубодисперсного минерального вещества. Извлекают донный осадок и воду. Извлеченный донный осадок компостируют со структурообразователями, нефтеокисляющими микроорганизмами, биогенными элементами с получением почвогрунтов. Используют электроды для уменьшения остаточной концентрации металлов в почвогрунтах. Отделенную от донного осадка воду возвращают в непроточный водоем. Извлеченную из водоема воду очищают последовательно сорбцией и фильтрованием в геохимическом барьере, заполненном минеральным зернистым материалом - силицированным кальцитом фракции 2-5 мм, в котором размещены электрохимические источники тока, генерирующие коагулянт. Очищенную воду возвращают в водоем, создавая циркуляцию воды. Воду фильтруют со скоростью 1-5 м/ч при длине геохимического барьера 8-16 м. Изобретение позволяет повысить эффективность очистки воды и донных отложений водоема. 1 ил., 4 табл.

Изобретение относится к утилизации углеродсодержащих смесей и может быть использовано при утилизации промышленных, сельскохозяйственных, производственных и бытовых отходов, содержащих твердые и жидкие углеводороды, для получения из них синтетического жидкого топлива как источника энергии. Способ переработки твердых и жидких отходов, содержащих углеводороды, и получения из них синтетического жидкого топлива основан на электрогидравлическом разрушении структуры их молекулярных связей управляемым импульсным электрическим разрядом. Способ заключается в том, что в трубчатый импульсный реактор подают исходную среду, обеспечивая постоянное смещение среды в трубе реактора, трижды по ходу смещения исходной среды воздействуют на находящуюся в реакторе среду прямоугольными электрическими высоковольтными импульсами. Способ отличается тем, что используют среду, образованную только сырьем в виде углеродсодержащих отходов и водой, где соотношение вода/сырье в процентах составляет: для твердых углеводородов - 50÷60/40÷50, для жидких углеводородов - 30÷35/65÷70, а для материалов, содержащих углеводороды, - 60÷80/20÷40, напряжение воздействующих импульсов устанавливают в диапазоне 6-10 кВ, при этом для каждого из трех воздействий задают различные длины и частоты воздействующих импульсов так, что частота воздействующих импульсов от первого до третьего воздействия увеличивается в диапазоне от 2 Гц до 50 Гц, а их длительность уменьшается от 250 мс до 10 мс с удалением образующегося синтез-газа и получением синтетического жидкого топлива. Технический результат - переработка твердых и жидких отходов, содержащих углеводороды, получение из них синтетического жидкого топлива без использования растворителей и/или катализаторов. 4 ил., 2 пр.

Изобретение направлено на повышение мобильности установки и снижение транспортных расходов установки для переработки отходов бурения в готовый прочный сыпучий формованный строительный материал - искусственный камень. Передвижная установка для переработки отходов бурения содержит функциональные модули, включающие комплекс устройств, соединенных в технологической последовательности насосами и конвейерами, и отличается тем, что установка содержит модуль загрузки и подготовки отходов, модуль фильтрования, модуль смешения и прессования, модуль предварительного твердения и выгрузки брикетов, при этом модуль загрузки и подготовки отходов содержит приемно-буферную емкость с мешалкой, приемные бункеры природного песка, сорбента и пластификатора, соединенные шнековыми дозаторами с приемно-буферной емкостью. Модуль фильтрования содержит шламовый насос, с помощью которого приемно-буферная емкость соединена с фильтр-прессом. Фильтр-пресс соединен с емкостью слива фильтрата, насосами и фильтром очистки фильтрата, а ленточными конвейерами - с двухвальным смесителем. Модуль смешения и прессования содержит бункер цемента и бункер ускорителя твердения, соединенные шнековыми дозаторами с двухвальным смесителем, в котором бункер выгрузки смеси обезвоженных отходов бурения, цемента и ускорителя твердения ленточным транспортером соединен с загрузочным бункером брикетировочного пресса. Модуль предварительного твердения и выгрузки брикетов содержит ленточный перегрузочный и ленточный штабелирующий транспортеры для передачи брикетов на твердение, соединенные с брикетировочным прессом из модуля смешения и прессования. Приемно-буферная емкость из модуля загрузки и подготовки отходов шламовым насосом соединена с фильтр-прессом из модуля фильтрования. 1 ил.

Изобретение относится к утилизации органических отходов, а именно к устройствам для их переработки путем пиролиза с получением генераторного газа, и может быть использовано для утилизации отходов заводов по производству риса и овса с получением аморфного кремнийсодержащего остатка. Устройство утилизации сыпучих органических отходов содержит последовательно установленные питательный бункер 1, газогенератор 2, вихревой уловитель 4, теплообменники 5 и скрубберы 6, соединенные между собой теплоизолированными стальными трубами, а также линию выгрузки зольного остатка. Отвод 9 указанной линии подключен между газогенератором 2 и вихревым уловителем 4. Газогенератор 2 снабжен блоком контроля подачи воздуха 3 и соединен с ним гибкими текстильными воздуховодами. После газогенератора 2 установлен блок дожигания зольного остатка 10. Блок дожигания зольного остатка 10 может быть расположен между газогенератором 2 и отводом линии выгрузки зольного остатка 9 или непосредственно на линии выгрузки зольного остатка. Изобретение позволяет повысить эффективность утилизации за счет получения высококачественного аморфного кремнийсодержащего остатка. 3 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к охране окружающей среды, а конкретно к снижению негативного влияния на экологию и увеличению эффективности обезвреживания твердых отходов, и может быть использовано для обезвреживания твердых отходов, в том числе ртутьсодержащих отходов, образующихся результате производственной деятельности, в том числе ртутных термометров, энергосберегающих ламп, люминесцентных ламп и прочих отходов, содержащих ртуть. Устройство обезвреживания ртутьсодержащих отходов содержит смесительный барабан для перемешивания ртутьсодержащих отходов, размельчающей среды и жидкости, которая содержит серу, с обеспечением разлома ртутьсодержащих отходов и протекания реакции связывания металлической ртути ртутьсодержащих отходов с серой в сульфиды ртути, загрузочный лоток, который выполнен с возможностью герметичного закрытия, сосуд, содержащий жидкость, содержащую серу, через который пропускают газы из смесительного барабана через содержащуюся в сосуде жидкость для протекания реакции связывания паров ртути с серой в сульфиды ртути. Способ обезвреживания ртутьсодержащих отходов включает загрузку размельчающей среды для разлома ртутьсодержащих отходов в смесительный барабан, который установлен на мобильной платформе, герметичное закрывание загрузочного лотка, вращение смесительного барабана с обеспечением протекания реакции связывания ртути ртутьсодержащих отходов с серой в сульфиды ртути, откачку газов из смесительного барабана, пропускание газов через сосуд, содержащий жидкость, содержащую серу для связывания паров ртути с серой, возвращение газов в смесительный барабан. Использование данной группы изобретений обеспечивает повышение степени обезвреживания ртутьсодержащих отходов. 2 н. и 5 з.п. ф-лы, 2 ил.

Техническим результатом предлагаемого изобретения является полное обеззараживание строительных материалов и грунта без вывоза их на специализированные полигоны захоронения при ликвидации последствий деятельности объектов по хранению и уничтожению химического оружия, производству химического оружия и высокотоксичных веществ, включая рекультивацию прилегающей территории. Способ рекультивации объектов, оказывающих негативное воздействие на окружающую среду, включает разбор зданий и сооружений с минимальным выбросом пыли и формирование котлована, который получен при изъятии грунта и разрушении строительных конструкций. Полную детоксикацию строительных материалов и грунта осуществляют совместно методом выщелачивания в котловане, дно которого формируют с уклоном в сторону коллектора с колодцем для сбора сточных вод и системой их подачи на станцию водоочистки. 4 з.п. ф-лы, 4 табл.

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок газоперекачивающих компрессорных станций магистральных газопроводов. Из указанных газов отбирают диоксид углерода, который охлаждают в теплообменнике газотурбинной установки, затем гидрируют на медьсодержащем катализаторе в реакторе для синтеза метанола. Водород для гидрирования диоксида углерода получают путем высокотемпературного электролиза воды на кислородопроводящей мембране. Требуемую температуру электролиза поддерживают за счет тепла, выделяющегося в теплообменнике газотурбинной установки при охлаждении диоксида углерода. Кислород, отделяемый попутно при помощи мембраны, добавляют в природный газ, направляемый в качестве топлива для газотурбинной установки. Использование данного способа обеспечивает упрощение утилизации углеродсодержащих отходов и снижение стоимости метанола. 1 з.п. ф-лы, 1 ил.

Наверх