Способ микрохирургической реконструкции спинного мозга на животной модели с использованием биодеградируемого гидрогеля на основе поливинилового спирта

Изобретение относится к медицине, а именно к нейрохирургии, и может быть использовано при микрохирургической реконструкции спинного мозга. Для этого при моделировании у животного частичного повреждения спинного мозга путем гемосекции используют гидрогель ММ-гель-Р. Фрагмент гидрогеля имплантируют в область дефекта таким образом, чтобы направление каналов внутри геля оказывалось строго параллельно направлению волокон спинного мозга. Предлагаемый способ позволяет достичь прорастания миелиновых волокон через вставку из гидрогеля. Это приводит к появлению клинического эффекта в виде восстановления мышечной силы в конечностях до 3 баллов в течение 10-11 недель после операции. 6 ил.

 

Изобретение относится к медицине, а именно к нейрохирургии, и может быть использовано при микрохирургической реконструкции спинного мозга.

Тяжелая травма позвоночника, осложненная повреждением спинного мозга в виде его компрессии, размозжения, частичном или полном разрыве, остается одной из актуальных медико-социальных проблем современной медицины, т.к. ведет к глубокой инвалидизации пострадавших.

Известны способы консервативного, реабилитационного и хирургического лечения, которые могут воздействовать только на "плюс-симптомы": те или иные проявления спастического синдрома, и могут быть эффективны только при частичном повреждении спинного мозга и сохранении мышечной силы не менее 3 баллов. В этом случае при адекватной коррекции спастического синдрома (ботулинотерапия, ITB, ризотомия, SCS) возможно увеличение объема активных движений и, в перспективе, восстановление ходьбы [1-3]. Однако при более обширных повреждениях спинного мозга или его полном перерыве, на первое место выходят симптомы выпадения: мышечная слабость вплоть до плегии. Больные при этом становятся глубокими инвалидами с минимальным реабилитационным потенциалом.

Также известны способы хирургической реконструкции спинного мозга: пересадка периферического нерва, трансплантация шванновских клеток, пересадка обкладочных клеток обонятельного эпителия, трансплантация эмбриональных клеток. Однако ни одна из этих методик не давала клинического эффекта [4-6].

В качестве направителей роста для нервных волокон при реконструкции спинного мозга целесообразно использовать различные полимерные материалы, а именно такой класс материалов, как гидрогели на основе биосовместимых материалов. В процессе полимеризации внутри геля образуется множество параллельно ориентированных каналов, которые могут выполнять роль направителей роста при прорастании аксонов. Ранее известен гидрогель ММ-гель-Р. Этот материал синтезируют посредством сшивки по свободно-радикальному механизму специальным образом модифицированных водорастворимых биосовместимых полимеров. Основой этого материала является поливиниловый спирт - синтетический полимер, используемый в медицине на протяжении десятков лет.

Технической задачей заявляемого изобретения является разработка способа реконструкции спинного мозга после частичного повреждения спинного мозга (гемисекции) с использованием биодеградируемого гидрогеля на основе поливинилового спирта. Решение поставленной задачи достигается тем, что в область дефекта ткани спинного мозга имплантируется вставка на основе гидрогеля ММ-гель-Р.

Способ микрохирургической реконструкции спинного мозга с использованием гидрогеля разрабатывался на животном материале (кошки). Оперативное вмешательство выполнялось с участием ветеринарного врача в условиях общей комбинированной внутривенной анестезии с протекцией дыхательных путей интубационной трубкой. Проводился мониторинг витальных функций, инфузионная терапия. Осуществлялся хирургический доступ к нижнегрудному отделу спинного мозга, выполнялась ламинэктомия дужек Th10-Th12. Далее вскрывалась твердая мозговая оболочка и проводилась микрохирургическая гемисекция спинного мозга на нижнегрудном уровне с формированием диастаза 10 мм между дистальным и проксимальным концом. Выбор в пользу гемисекции связан с тем, что полное пересечение спинного мозга будет приводить к появлению выраженных нарушений функции тазовых органов, восходящей мочевой инфекции и возможной гибели животных. После этого в область дефекта имплантировался фрагмент гидрогеля таким образом, что направление каналов внутри геля оказывалось строго параллельно направлению волокон спинного мозга. На фиг. №1 демонстрируется вставка из гидрогеля (1), имплантированная в область дефекта ткани спинного мозга.

Фиксации гидрогеля нитями к ткани спинного мозга не требовалось вследствие высокой адгезивной способности геля. Твердая мозговая оболочка ушивалась наглухо нитью 8-0 и укрывалась сверху фрагментом тахокомба. По окончании операции животное пробуждалось, было экстубировано, произведено опорожнение мочевого пузыря.

В раннем послеоперационном периоде осуществлялась антибактериальная, инфузионная терапия, проводилось обезболивание, адекватная нутритивная поддержка под строгим контролем ветеринарного врача. В течение первых 10 суток был установлен постоянный мочевой катетер для выведения мочи и промывания мочевого пузыря раствором диоксидина. С целью опорожнения кишечника применяли микроклизмы Микролакс. В последующем проводилась лишь временная катетеризация мочевого пузыря 2 раза в сутки с целью выведения мочи, стул нормализовался самостоятельно. Снятие швов проводилось на 10-е сутки после операции.

Динамическое наблюдение за животными продолжалось в течение 16 недель (112 суток). Такой срок наблюдения выбирался по двум причинам. Во-первых, скорость роста аксонов составляет 1 мм в сутки, т.е. область гидрогелевого моста волокна должны прорастать ориентировочно в течение 10-14 суток. Максимальное расстояние от уровня пересечения до альфа-мотонейронов на уровне поясничного утолщения спинного мозга составляет 50 мм. Таким образом, ориентировочный срок, требуемый для восстановления иннервации, составляет 60-70 суток. Однако срок наблюдения за неврологическим статусом должен быть больше, так как скорость прорастания волокон через гидрогель неизвестна. Во-вторых, ориентировочное время гидролиза гидрогеля составляет около 5 месяцев (150 суток), а забор препарата для морфологического исследования нужно выполнять раньше.

Сразу же после выполнения вмешательства у животных развивалась плегия в нижней конечности на стороне операции (фиг. №2). Спустя 8 недель после вмешательства было отмечено появление отдельных движений в пораженной конечности.

К сроку 10-11 недель после операции отмечалось восстановление силы до уровня 3 баллов (возможность опоры на пораженную конечность). Это демонстрируется на фиг. №3, где видно, что животное может стоять на пораженной конечности. В течение всего послеоперационного периода проводились лечебно-профилактические мероприятия направленные на профилактику атрофии нижних конечностей.

Выполнялся тщательный уход за животным: массаж нижних конечностей, свободное перемещение животного в помещении, своевременные гигиенические манипуляции, сбалансированное питание по рекомендации ветеринара.

После завершения срока наблюдения в условиях ветеринарной клиники проводилась эвтаназия животного. После премедикации была выполнена катетеризация периферической вены, проведена индукция анестезии с последующим введением миорелаксантов. После прекращения сердечной деятельности проводились забор блок-препарата позвоночника на один уровень выше и ниже области проведения реконструкции и фиксация его в растворе формалина. Препарат фиксировался в растворе формалина в течение 1 недели. После этого осуществлялся микрохирургический забор препарата спинного мозга. На фиг. №4 демонстрируется внешний вид реконструированного спинного мозга. В данном случае не отмечается признаков дефектов ткани, что характерно для травматического повреждения спинного мозга.

Далее изготовлялся блок-препарат и при помощи микротома выполнялись поперечные срезы спинного мозга через область реконструкции. После этого производилась окраска препаратов гематоксилин-эозином и нитратом серебра. После окрашивания препарата нитратом серебра верифицировано прорастание миелиновых волокон через гидрогель. На фиг. №5 демонстрируется окраска миелиновых волокон нитратом серебра в нормальном спинном мозге, на фиг. №6 - в гидрогеле. Как в белом веществе нормального спинного мозга, так и внутри гидрогеля видны миелиновые волокна, окрашенные нитратом серебра в темный цвет.

Таким образом, предлагаемый способ позволяет достичь основной задачи для реконструкции спинного мозга - прорастания миелиновых волокон через вставку из гидрогеля. Это приводит к появлению клинического эффекта в виде восстановления мышечной силы в конечностях до 3 баллов в течение 10-11 недель после операции. Полученные результаты на данной экспериментальной животной модели позволят в перспективе применить данную методику в клинической практике при реконструкции спинного мозга у людей.

Источники информации

1. Philippe Decq, Masahiro Shin, Surgery in the Peripheral Nerves for Lower Limb Spasticity, Operative Techniques in Neurosurgery 2004 Volume 7, Issue 3, Pages 136-146.

2. Pinter M., Epidural electrical stimulation of posterior structures of the human lumbosacral cord: control of spasticity, Spinal cord, 2000; 38 (9): 524-531.

3. Penn RD, Savoy SM, Corcos D, Latash M, Gottlieb G, Parke B, Kroin JS. Intrathecal baclofen for severe spinal spasticity. N Engl J Med 1989; 320: 1517-1521.

4. Tello F. La influencia del neurotropismo en la regenevaciyn de los centres nerviosos. Trab Inst Cajal Invest Biol t. 9, 1911.

5. [\Xu X.M., Chen A., Guenard V., Kleitman N., Bunge M.B. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J Neurocytol 1997; 26: 1-16.

6. Li Y., Field P.M., Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 1997; 277: 2000-2002.

Способ микрохирургической реконструкции спинного мозга на животной модели, включающий использование полимера в виде геля, отличающийся тем, что при моделировании у животного частичного повреждения спинного мозга путем гемосекции используют гидрогель ММ-гель-Р, фрагмент которого имплантируют в область дефекта таким образом, чтобы направление каналов внутри геля оказывалось строго параллельно направлению волокон спинного мозга.



 

Похожие патенты:
Изобретение относится к медицине, в частности к экспериментальной фармакологии, и может быть использовано для коррекции микроциркуляторных нарушений в плаценте. Способ включает воспроизведение ADMA-подобной модели гестоза у лабораторных беременных крыс линии Wistar ежедневным внутрибрюшинным введением с 14 по 20 день беременности ингибитора NO- синтазы L-NAME в дозе 25 мг/кг/сутки.
Изобретение относится к медицине, в частности к фармакологии и офтальмологии, и может быть использовано для профилактики ишемических состояний сетчатки в эксперименте.
Изобретение относится к медицине, в частности к экспериментальной фармакологии и офтальмологии, и может быть использовано для профилактики ишемической нейропатии зрительного нерва.

Изобретение относится к медицине, а именно к экспериментальной кардиофармакологии, и может быть использовано в комплексной оценке активности фармакологических средств на изолированном сердце крысы.

Изобретение относится к медицине, в частности к экспериментальной фармакологии и неврологии, и может быть использовано для профилактики ишемических состояний головного мозга.

Изобретение относится к экспериментальной медицине и может быть применимо для моделирования реконструкции передней крестообразной связки коленного сустава. Измеряют диаметр полученного трансплантата, сложенного вдвое.
Изобретение относится к экспериментальной медицине, а именно к патофизиологии, и может быть использовано для прогноза развития патогенетического процесса по культивируемому и некультивируемому типу при инфекционных заболеваниях.
Изобретение относится к экспериментальной медицине, а именно к нейрохирургии, и может быть использовано для моделирования тяжелой черепно-мозговой травмы с грубыми стойкими нарушениями неврологических и когнитивных функций.

Изобретение относится к медицине, в частности к экспериментальной токсикологии, и может быть использовано при исследовании механизмов токсического действия растворимых форм бериллия.

Изобретение относится к области медицины, а именно к методам экспериментального моделирования патологических процессов, протекающих в мочевой системе. Предлагаемый способ моделирования процесса образования оксалатного мочевого камня основан на выращивании камня в искусственно созданной модельной среде мочи человека, при этом для приготовления раствора используют: CaCl2⋅2H2O - 7 ммоль/л, MgSO4⋅7H2O - 4 ммоль/л, NH4Cl - 8 ммоль/л, K2SO4 - 6 ммоль/л, (NH4)2C2O4⋅H2O - 2÷4 ммоль/л, (NH4)3PO4 - 10 ммоль/л, K2CO3 - 7 ммоль/л, KCl - 24 ммоль/л, NaCl - 140 ммоль/л, и дистиллированную воду.

Изобретение относится к медицине и может быть использовано для лечения вправимых и неущемленных паховых грыж. В медиальную часть пахового канала пациента, лежащего на спине, путем инъекции через иглу вводят способную к полимеризации смесь, состоящую из трех растворов А, В и С.

Изобретение относится к медицине, в частности к гнойной хирургии, и может быть использовано для лечения абсцессов мягких тканей. Способ лечения включает вскрытие гнойника, эвакуацию содержимого и лазерное разрушение внутриполостного тканевого секвестра.

Группа изобретений относится к медицине, а именно к хирургии, и касается визуализации кровеносного сосуда в жировой ткани во время операции на этапе удаления этой ткани.
Изобретение относится к медицине, а именно - к нейрохирургии, лечению больных с аномалией Арнольда-Киари. Осуществляют Y-образное вскрытие твердой мозговой оболочки (ТМО) до освобождения миндаликов мозжечка и последующую пластику образовавшегося дефекта.

Изобретение относится к медицине, а именно к брюшной хирургии. Осуществляют интрапортальное введение озонированных физиологического раствора и перфторана.

Изобретение относится к технологии получения материалов для медицины на основе производных целлюлозы, в качестве которых используют гидроксиэтилцеллюлозу, и может быть использовано в качестве средства профилактики послеоперационных спаек в герниопластике на органах, имеющих серозное покрытие.

Изобретение относится к медицине, а именно к хирургии. Выполняют внутрибрюшную санацию и кишечный перитонеально-интестинальный лаваж с использованием озона под контролем внутрибрюшного давления.

Изобретение относится к области медицины и химической технологии высокомолекулярных соединений, а именно к способу получения противоспаечного пленочного материала, включающему растворение полимера, в качестве которого используется смесь карбоксиметилцеллюлозы и гидроксиэтилцеллюлозы в соотношении от 8:2 до 3:7, в воде в присутствии структурирующего агента – глутаровой кислоты в количестве 10-50% от массы полимеров, сушку при 18-25°C и термообработку на воздухе при 98-105°C в течение 180-360 мин.

Изобретение относится к области медицины и химической технологии высокомолекулярных соединений, а именно к способу получения противоспаечного пленочного материала, включающему растворение полимера, в качестве которого используют смесь карбоксиметилцеллюлозы и гидроксиэтилцеллюлозы в соотношении от 8:2 до 3:7, в воде в присутствии структурирующего агента – диглутарового эфира 1,6-гександиола в количестве 10-50% от массы полимера, сушку при 18-25°С и термообработку на воздухе при 98-105°С в течение 180-360 мин.
Изобретение относится к медицине, а именно к общей хирургии, травматологии и ортопедии. Выполняют санацию остеомиелитического очага, пластику костной полости обогащенной тромбоцитами аутоплазмой и биоматериалом.

Изобретение относится к медицине и может быть использовано для лечения вправимых и неущемленных паховых грыж. В медиальную часть пахового канала пациента, лежащего на спине, путем инъекции через иглу вводят способную к полимеризации смесь, состоящую из трех растворов А, В и С.

Изобретение относится к медицине, а именно к нейрохирургии, и может быть использовано при микрохирургической реконструкции спинного мозга. Для этого при моделировании у животного частичного повреждения спинного мозга путем гемосекции используют гидрогель ММ-гель-Р. Фрагмент гидрогеля имплантируют в область дефекта таким образом, чтобы направление каналов внутри геля оказывалось строго параллельно направлению волокон спинного мозга. Предлагаемый способ позволяет достичь прорастания миелиновых волокон через вставку из гидрогеля. Это приводит к появлению клинического эффекта в виде восстановления мышечной силы в конечностях до 3 баллов в течение 10-11 недель после операции. 6 ил.

Наверх