Способ флюоресцентной диагностики в ходе фотодинамической терапии глазных заболеваний



Способ флюоресцентной диагностики в ходе фотодинамической терапии глазных заболеваний
Способ флюоресцентной диагностики в ходе фотодинамической терапии глазных заболеваний
Способ флюоресцентной диагностики в ходе фотодинамической терапии глазных заболеваний
Способ флюоресцентной диагностики в ходе фотодинамической терапии глазных заболеваний
Способ флюоресцентной диагностики в ходе фотодинамической терапии глазных заболеваний

 

A61F9 - Способы и устройства для лечения глаз; приспособления для вставки контактных линз; устройства для исправления косоглазия; приспособления для вождения слепых; защитные устройства для глаз, носимые на теле или в руке (шапки, кепки с приспособлениями для защиты глаз A42B 1/06; смотровые стекла для шлемов A42B 3/22; приспособления для облегчения хождения больных A61H 3/00; ванночки для промывки глаз A61H 33/04; солнцезащитные и другие защитные очки с оптическими свойствами G02C)

Владельцы патента RU 2411901:

Федеральное государственное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Федерального агентства по высокотехнологичной медицинской помощи" (RU)

Изобретение относится к медицине, офтальмологии и может быть использовано для флюоресцентной диагностики в ходе фотодинамической терапии глазных заболеваний. Пациенту внутривенно вводят фотосенсибилизатор (ФС), проводят флюоресцентную диагностику при помощи устройства, содержащего источник лазерного излучения, систему его доставки с оптическим адаптером для транспупиллярного облучения, гомогенезирующий элемент, микроскоп, высокочувствительную черно-белую видеокамеру с фильтром для формирования изображения исследуемого участка глаза, систему отображения видеоинформации. Используют фильтр с характеристиками: оптическая плотность для диапазона 400-750 нм - не менее 4; для диапазона 780-890 нм - не более 1. Система отображения видеоинформации представлена персональным компьютером с программным обеспечением для регистрации и обработки изображений. Глаз пациента в ходе диагностики облучают широким однородным пучком лазерного излучения диаметром 6-12 мм с длиной волны, соответствующей максимуму поглощения хлориновым ФС светового излучения. Плотность мощности 20-40 мВт/см2. Способ обеспечивает четкость визуализации флюоресценции ФС при фотодинамической терапии с одновременной визуализацией деталей облучаемых структур глаза в световом пятне диаметром 6-12 мм. 5 ил.

 

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для флюоресцентной диагностики в ходе фотодинамической терапии глазных заболеваний.

Фотодинамическая терапия (ФДТ) является эффективным методом лечения онкологических заболеваний. Потенциальной сферой успешного применения ФДТ в офтальмологии рассматривается широкий спектр дистрофических, воспалительных и сосудистых заболеваний, сопровождающихся развитием неоваскулярных осложнений: вторичная неоваскулярная глаукома, васкуляризированные бельма роговицы, хориоидальная неоваскуляризация при возрастной макулярной дистрофии и осложненной миопии, а также внутриглазные новообразования.

На сегодняшний день в числе наиболее перспективных фотосенсибилизаторов (ФС) для ФДТ глазных заболеваний, сопровождающихся неоангиогенезом и пролифераций, включая внутриглазные опухоли и опухолеподобные заболевания, рассматриваются препараты хлоринового ряда («Фотодитазин», «Фотолон», «Радахлорин»).

Первая область флюоресценции хлориновых ФС (675-680 нм) находится в непосредственной близости к длинноволновому пику поглощения (662±2 нм). Это объясняет технические сложности регистрации флюоресценции ФС при проведении ФДТ в офтальмологической практике, и как следствие, невозможность визуальной оценки достаточности фотодинамического воздействия.

Известен способ диагностики и фотодинамической терапии заболеваний глаз (патент РФ на изобретение №2258452), включающий внутривенное введение ФС, проведение флюоресцентной диагностики при помощи устройства, содержащего источник лазерного излучения, систему его доставки с оптическим адаптером для транспупиллярного облучения, гомогенезирующий элемент, микроскоп, высокочувствительную черно-белую видеокамеру с фильтром для формирования изображения исследуемого участка глаза, систему отображения видеоинформации.

Недостатками данного способа являются: отсутствие четкости изображения флюоресценции и деталей облучаемых структур глаза, необходимость использования двух видеокамер: цветной и черно-белой, что более затратно, ограниченный диаметр светового пятна (1000 мкм), в котором визуализируется изображение.

Задачей изобретения является разработка эффективного способа флуоресцентной диагностики в ходе фотодинамической терапии глазных заболеваний.

Техническим результатом изобретения является четкая визуализация флюоресценции хлоринового ФС в ходе фотодинамической терапии с одновременной визуализацией деталей облучаемых структур глаза в световом пятне диаметром 6-12 мм.

Технический результат достигается тем, что в способе, включающем внутривенное введение ФС, проведение флюоресцентной диагностики при помощи устройства, содержащего источник лазерного излучения, систему его доставки с оптическим адаптером для транспупиллярного облучения, гомогенезирующий элемент, микроскоп, высокочувствительную черно-белую видеокамеру с фильтром для формирования изображения исследуемого участка глаза, систему отображения видеоинформации, согласно изобретению, в устройстве используют фильтр со следующими характеристиками: оптическая плотность для диапазона 400-750 нм - не менее 4; оптическая плотность для диапазона 780-890 нм - не более 1, система отображения видеоинформации представлена персональным компьютером с программным обеспечением для регистрации и обработки полученных изображений, а глаз пациента в ходе флюоресцентной диагностики облучают широким однородным пучком лазерного излучения диаметром 6-12 мм с длиной волны, соответствующей максимуму поглощения хлориновым ФС светового излучения, при плотности мощности 20-40 мВт/см2.

Технический результат достигается за счет того, что: 1) глаз пациента в ходе флюоресцентной диагностики облучают широким однородным пучком лазерного излучения диаметром 6-12 мм с длиной волны, соответствующей максимуму поглощения хлориновым ФС светового излучения, при плотности мощности 20-40 мВт/см2; 2) используют фильтр с характеристиками: оптическая плотность для диапазона 400-750 нм - не менее 4; оптическая плотность для диапазона 780-890 нм - не более 1. Данный фильтр из набора цветных стекол оптических (стекло КС-19) отфильтровывает ультрафиолетовое и видимое излучение до длины волны 700 нм. У хлориновых препаратов второй пик флюоресценции находится в области 720 нм и имеет пологий характер до 890 нм, поэтому при возбуждении с длиной волны 662±2 нм используемый фильтр дает возможность видеть флюоресценцию хлориновых препаратов в указанном диапазоне.

Изобретение поясняется чертежами. На фиг.1 приведена блок-схема устройства для флюоресцентной диагностики в ходе фотодинамической терапии глазных заболеваний, где 1 - лазер, 2 - адаптер-формирователь пятен, 3 - гомогенизирующий элемент, 4- микроскоп, 5 - адаптер-делитель, 6 - фильтр, 7 - высокочувствительная черно-белая видеокамера, 8 - персональный компьютер с программным обеспечением для регистрации и обработки полученных изображений.

Способ осуществляется следующим образом.

Пациенту после внутривенного введения хлоринового ФС, например фотодитазина, фотолона, радахлорина, проводят лазерное облучение патологического участка с длиной волны, соответствующей максимуму поглощения хлориновым ФС светового излучения, например, с длиной волны 662 нм, при плотности мощности 20-40 мВт/см2. При этом выходящее из лазера 1 излучение проходит адаптер-формирователь пятен 2, гомогенизирующий элемент 3 и облучает широким однородным пучком (⌀6-12 мм) глаз пациента, вызывая флюоресценцию ФС. При этом никаких дополнительных осветителей не используют. Далее световой поток через микроскоп 4, адаптер-делитель 5, фильтр 6 с характеристиками: оптическая плотность для диапазона 400-750 нм - не менее 4; оптическая плотность для диапазона 780-890 нм - не более 1 попадает на высокочувствительную черно-белую видеокамеру 7. Изображение с видеокамеры 7 поступает на персональный компьютер с программным обеспечением для регистрации и обработки полученных изображений 8. На экране персонального компьютера отображается четкая картина флюоресценции хлоринового ФС и детали облучаемых структур глаза, находящихся в поле облучения (⌀6-12 мм).

Изобретение поясняется следующими экспериментальными данными и фигурами 2, 3.

Изучение динамики накопления хлоринового ФС в новообразованных сосудах роговицы методом флюоресцентной диагностики проводили на 8 глазах 8 кроликов с экспериментально-индуцированной неоваскуляризацией роговицы. Всем животным проводили флюоресцентную диагностику переднего отрезка глаза с препаратом «Фотолон» по предложенному способу.

Лазерное облучение роговицы осуществляли с длиной волны 662 нм при плотности мощности 20 мВт/см2 после внутривенного введения ФС. Диаметр светового пятна - 6 мм.

Флюоресцентно-ангиографическая картина характеризовалась низкоинтенсивным контрастированием новообразованных сосудов роговицы, начиная с 1-й минуты исследования. В дальнейшем отмечалось постепенное нарастание интенсивности свечения фотодитазина в просвете новообразованных сосудов к 5-й минуте с достижением максимума к 10-й минуте от начала введения препарата (фиг.2а-в). После 15 минуты наблюдался выраженный экстравазальный выход ФС за пределы неоваскулярной сети с интенсивным прокрашиванием окружающей роговичной стромы (фиг.2 г).

На фиг.2 изображена картина флюоресцентной диагностики экспериментально-индуцированной неоваскуляризации роговицы кролика с препаратом «Фотолон»: а) 1 минута после введения ФС; б) 5 минут после введения ФС; в) 10 минут после введения ФС; г) 15 минут после введения ФС; д) график динамики интенсивности флюоресценции ФС, полученный при помощи программного обеспечения для регистрации и обработки изображений.

Изучение динамики накопления хлоринового ФС в новообразованных сосудах экспериментально-индуцированной хориоидальной неоваскуляризации методом флюоресцентной диагностики проводили на 6 глазах 6 кроликов. Всем животным проводили флюоресцентную диагностику хориоидальной неоваскуляризации с препаратом «Радахлорин» по предложенному способу.

Лазерное облучение сетчатки осуществляли с длиной волны 662 нм при плотности мощности 30 мВт/см2 после внутривенного введения ФС. Диаметр светового пятна - 8 мм.

Начиная с 1-й минуты от введения ФС, достаточно четко контрастировались магистральные ретинальные сосуды в области ДЗН, а также крупные и средние хориоидальные сосуды (фиг.3 а). К 15 минутам от введения препарата регистрировалось постепенное уменьшение интенсивности флюоресценции интактных ретинальных сосудов, напротив, флюоресценция патологического очага (области хориоидальной неоваскуляризации) имела устойчивую тенденцию к нарастанию уровня свечения, с прокрашиванием окружающих тканей к 20-й минуте (фиг.3 б-г). В дальнейшем наблюдалась длительная персистенция препарата в очаге с постепенным уменьшением интенсивности через 60 минут от введения ФС, сосуды сетчатки к этому времени не контрастировались.

На фиг.3 изображена картина флюоресцентной диагностики экспериментально-индуцированной хориоидальной неоваскуляризации кролика с препаратом «Радахлорин»: а) 5 минут после введения ФС; б) 10 минут после введения ФС; в) 15 минут после введения ФС; г) 20 минут после введения ФС; д) график динамики интенсивности флюоресценции ФС, полученный при помощи программного обеспечения для регистрации и обработки изображений.

Изобретение поясняется следующими клиническими данными и фигурами 4-5.

Клинические исследования включали 9 пациентов (9 глаз): 6 случаев с хориоидальной неоваскулярной мембраной (ХНВМ) и 3 случая с меланомами хориоидеи (MX). Всем пациентам проводили флюоресцентную диагностику переднего отрезка глаза с препаратом «Фотодитазин» по предложенному способу.

Лазерное облучение области ХНВМ осуществляли с длиной волны 662 нм при плотности мощности 30 мВт/см2 после внутривенного введения ФС. Диаметр светового пятна - 10 мм.

В ранних фазах исследования ангиоархитектоника ХНВМ отчетливо не определялась. В интервале 10-20 минут от начала введения препарата наблюдалось постепенное нарастание интенсивности флюоресценции ХНВМ (рис.4 а-г). После 20 минут наблюдалась экстравазальная флюоресценция с медленным прокрашиванием перифокальной сетчатки и длительной персистенцией красителя, продолжающейся до 60 минут от введения ФС. Через 1 час от введения ФС определялась диффузная флюоресценция очага, соответствующая локализации ХНВ, значительно превышающая по площади размеры мембраны, флюоресценция ретинальных и хориоидальных сосудов отсутствовала. Остаточная флюоресценция очага регистрировалась от 60 до 90 минут от введения ФС.

На фиг.4 изображена картина флюоресцентной диагностики ХНВМ с препаратом «Фотодитазин»: а) 10 минут после введения ФС; б) 15 минут после введения ФС; в) 20 минут после введения ФС; г) график динамики интенсивности флюоресценции ФС, полученный при помощи программного обеспечения для регистрации и обработки изображений.

Лазерное облучение MX осуществляли с длиной волны 662 нм при плотности мощности 40 мВт/см2 после внутривенного введения ФС. Диаметр светового пятна - 12 мм.

При проведении ФД у пациентов с MX максимум флюоресценции «Фотодитазина» в опухоли наблюдался через 1,5-2 часа от начала введения, что согласуется с данными о кинетике данного препарата в общей онкологической практике (Каплан М.А. с соавт., 2004). В случаях меланом средних и больших размеров обращало на себя внимание характерное пятнистое окрашивание опухоли, свидетельствующее о неравномерном накоплении ФС (рис.5 а-д). Следует отметить, что контрастирование сосудов сетчатки над опухолью, а также крупных хориоидальных сосудов наблюдалось с первых секунд регистрации и сохраняло свою интенсивность с постепенным уменьшением уровня свечения после 30 минут от начала введения ФС.

На фиг.5 изображена картина флюоресцентной диагностики MX с препаратом «Фотодитазин»: а) 30 минут после введения ФС; б) 60 минут после введения ФС; в) 90 минут после введения ФС; г) 120 минут после введения ФС; д) график динамики интенсивности флюоресценции ФС, полученный при помощи программного обеспечения для регистрации и обработки изображений.

Таким образом, заявляемый способ обеспечивает четкую визуализацию флюоресценции хлоринового ФС в ходе фотодинамической терапии с одновременной визуализацией деталей облучаемых структур глаза в световом пятне диаметром 6-12 мм.

Способ флюоресцентной диагностики в ходе фотодинамической терапии глазных заболеваний, включающий внутривенное введение фотосенсибилизатора (ФС), проведение диагностики при помощи устройства, содержащего источник лазерного излучения, систему его доставки с оптическим адаптером для транспупиллярного облучения, гомогенезирующий элемент, микроскоп, высокочувствительную черно-белую видеокамеру с фильтром для формирования изображения исследуемого участка глаза, систему отображения видеоинформации, отличающийся тем, что в устройстве используют фильтр с характеристиками: оптическая плотность для диапазона 400-750 нм - не менее 4; оптическая плотность для диапазона 780-890 нм - не более 1, - а система отображения видеоинформации представлена персональным компьютером с программным обеспечением для регистрации и обработки полученных изображений, глаз пациента в ходе флюоресцентной диагностики облучают широким однородным пучком лазерного излучения диаметром 6-12 мм с длиной волны, соответствующей максимуму поглощения хлориновым ФС светового излучения, при плотности мощности 20-40 мВт/см2.



 

Похожие патенты:

Изобретение относится к медицине, а именно к разделу «внутренние болезни», и касается лечения больных ишемической болезнью сердца с сопутствующим сахарным диабетом 2 типа.
Изобретение относится к медицине, а именно к педиатрии, аллергологии, оториноларингологии, и может быть использовано для лечения аллергического ринита у детей. .

Изобретение относится к медицине, а именно - к эндокринологии, рефлексотерапии, физиотерапии. .
Изобретение относится к медицине и может быть использовано для лечения вторичной неоваскулярной глаукомы. .
Изобретение относится к медицине и может быть использовано в офтальмологии и офтальмоонкологии для электрохимической деструкции внутриглазных новообразований. .
Изобретение относится к медицине, а именно к гигиене труда, и может быть использовано для профилактики заболеваний верхних конечностей от различных видов физических нагрузок профессиональной этиологии.
Изобретение относится к медицине, а точнее к офтальмологии, и предназначено для профилактики вторичной неоваскулярной глаукомы вследствие ишемического тромбоза центральной вены сетчатки на ранних сроках с момента возникновения тромбоза.

Изобретение относится к области медицины, связанной с устранением отравляющего действия монооксидом углерода (СО) - угарным газом. .
Изобретение относится к медицине, в частности к офтальмологии. .
Изобретение относится к медицине, дерматологии, и может быть использовано для лечения больных псориазом. .

Изобретение относится к медицине и может быть использовано для лечения лейкоза у лабораторных животных. .

Изобретение относится к иммунолипосомальной форме фотосенсибилизатора на основе тетра-3-фенилтиофталоцианина гидроксиалюминия, которая используется в фотодинамической терапии злокачественных опухолей.
Изобретение относится к медицине и может быть использовано для лечения вторичной неоваскулярной глаукомы. .
Изобретение относится к медицине и может быть использовано для лечения абсцедирующего фурункула. .

Изобретение относится к производным 13(1)-N-{2-[N-(клозо-монокарбадодекаборан-1-ил)-метил]аминоэтил}амид-15(2),17(3)-диметилового эфира хлорина е6 общей формулы где M=Cs, Na, проявляющим свойства фотосенсибилизатора.

Изобретение относится к новым соединениям, а именно к карборанильным производным фторированных порфиринов и их металлокомплексам, конкретно к карборанильным производным 5,10,15,20-тетракис(пентафторфенил)порфирина общей формулы I, и к способу их получения.

Изобретение относится к производным порфирина формул I и II, где X1, X2, X3, X 4, X5, X6, X7, X8 представляют собой атомы галогенов или атомы водорода, a R 1, R2, R3, R4 выбирают из ОН-групп, аминокислот, OR-групп, NHR-групп и/или атомов хлора, где R - это алкил, имеющий от 1 до 12 атомов углерода.
Изобретение относится к медицине и может быть использовано для лечения обширных гнойных ран мягких тканей. .

Изобретение относится к области медицины, а именно к офтальмологии, и может быть использовано для хирургического лечения катаракты. .
Наверх