Способ выделения коротких рнк из биологических жидкостей



Способ выделения коротких рнк из биологических жидкостей
Способ выделения коротких рнк из биологических жидкостей
Способ выделения коротких рнк из биологических жидкостей

 


Владельцы патента RU 2558292:

Федеральное государственное бюджетное учреждение науки Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук (ИХБФМ СО РАН) (RU)

Изобретение относится к области биохимии. Предложен способ выделения коротких РНК из биологических жидкостей. Способ включает обработку образца денатурирующим буферным раствором, сорбцию коротких РНК на стекловолоконном сорбенте в присутствии хаотроптного агента с последующей отмывкой сорбента от несвязавшихся биополимеров и химических реагентов и элюцией целевого продукта. Образец биологической жидкости подвергают двухстадийной денатурации, при этом на первой стадии к образцу добавляют два объема денатурирующего буферного раствора, а на второй стадии к полученной смеси добавляют два объема 96% этанола и равный объем хлороформа с последующим перемешиванием и отделением осадка центрифугированием. Отмывку сорбента от несвязавшихся биополимеров осуществляют дважды буферным раствором, а элюцию целевого продукта с сорбента осуществляют буферным раствором. Изобретение обеспечивает упрощение способа, сокращение его длительности и повышение выхода коротких РНК. 2 з.п. ф-лы, 3 табл., 4 пр.

 

Изобретение относится к области молекулярной биологии и диагностической медицины и может быть использовано для выделения коротких рибонуклеиновых кислот (РНК) из биологических жидкостей.

Термин «короткие рибонуклеиновые кислоты (короткие РНК)» по данному описанию в контексте настоящего изобретения означает фрагменты РНК с длиной до 50 нуклеотидов, представленные такими известными молекулами РНК, как микроРНК (miRNA), малые интерферирующие РНК (siRNA) и piwi-взаимодействующие РНК (piRNA), а также, потенциально, фрагменты расщепления более длинных молекул РНК, такие как матричные РНК (mRNA), рибосомальные РНК (rRNA), транспортные РНК (tRNA), ядерные и ядрышковые РНК (snRNA и snoRNA), длинные некодирующие РНК (lncRNA) и др.

Наибольший интерес из коротких РНК для диагностической медицины представляют циркулирующие в крови и находящиеся в других биологических жидкостях микроРНК, которым посвящено огромное количество исследований (1). МикроРНК представляют собой короткие (18-24 нуклеотида), не кодирующие белок, молекулы РНК, регулирующие экспрессию множества генов на посттранскрипционном уровне. МикроРНК участвуют практически во всех базовых процессах от момента возникновения организма: эмбриональном развитии, пролиферации, дифференцировке, старении, иммунном и стрессорном ответах, геномном импринтинге, в ключевых процессах метаболизма. Исследования последних лет показали, что микроРНК сами могут выступать в роли онкогенов и супрессоров опухолевого роста, при развитии самых разнообразных опухолей.

Основным препятствием в выделении высококачественных препаратов коротких РНК из биологических жидкостей является высокое содержание в них биополимеров ненуклеотидной природы (белки, липопротеины, липиды и их комплексы), в том числе входящих в комплексы с микроРНК, присутствие в них ингибиторов ферментов, используемых в последующем анализе (например, ПЦР), а также высокое содержание ферментов, расщепляющих нуклеиновые кислоты.

Таким образом, получение высокоочищенных препаратов недеградированных коротких РНК, пригодных для последующего анализа (ОТ-ПЦР, микрочиповый анализ, полногеномное секвенирование), является актуальной проблемой в молекулярной биологии.

В настоящее время для получения коротких РНК из биологических жидкостей традиционно используются способы, основанные на фенольной экстракции. Эти способы отличаются трудоемкостью, многостадийностью, сложностью в постановке и использованием токсичных химических реагентов (фенол).

Известен, например, способ выделения коротких РНК, включающий смешивание образца, растворенного в 4М растворе гуанидин изотиоцианата с водонасыщенным фенолом в кислой среде, с последующим разделением фаз при помощи добавления хлороформа (2). При центрифугировании такой смеси суммарная РНК остается в верхней водной фазе, белки образуют интерфазу, а ДНК переходит в органическую фазу. Варианты последующей очистки включают переосаждение спиртами или дополнительную очистку РНК, например, на стекловолоконных сорбентах.

Недостатками данного способа являются трудоемкость, использование токсичных химических реагентов, а также получение на выходе препарата суммарной РНК, специально необогащенной по содержанию короткими РНК.

Для обогащения короткими РНК в ряде коммерческих наборов (miRVANA, miRNeasy и др.) используется дополнительная стадия очистки на стекловолоконных сорбентах.

Известен способ выделения коротких РНК из биологических жидкостей, основанный на предварительной очистке препарата от биополимеров ненуклеотидной природы при помощи их осаждения (miRCURY) с последующим выделением рибонуклеиновых кислот из супернатанта на стекловолоконном сорбенте (3).

Всем вышеперечисленным способам присущ общий недостаток, заключающийся в потере части РНК при отделении нецелевых фракций.

Наиболее близким к заявляемому способу прототипом является способ выделения коротких РНК, основанный на известном методе фенольной экстракции (4), заключающийся в следующем. Образец плазмы денатурируют в буфере, содержащем 4М гуанидин изотиоцианат, проводят кислую фенольную экстракцию и разделяют органическую и водную фазы при помощи хлороформа. К верхней водной фазе прибавляют равный объем 96% этилового спирта (этанола) и наносят на колонку со стекловолоконным сорбентом, например производства Биосилика (BioSilica Ltd, Россия). Колонку отмывают от несвязавшихся биополимеров и избытка химических агентов (гуанидин изотиоцианат, хлороформ) согласно рекомендациям производителя и элюируют короткие РНК раствором для элюции, содержащим 10 мМ бикарбонат натрия. В отдельных случаях для дополнительной очистки от присутствия солей в образце проводят переосаждение коротких РНК, например, спиртами.

Недостатками известного способа являются: трудоемкость, возрастающая пропорционально количеству образцов, многостадийность, использование токсичных химических реагентов (фенол) и недостаточный выход целевого продукта. Кроме этого способ невозможно автоматизировать.

Задачей изобретения является получение препарата высокоочищенных недеградированных коротких РНК, пригодных для последующего анализа при помощи высокоточных молекулярно биологических методов, таких как ОТ-ПЦР, микрочиповый анализ и полногеномное секвенирование.

Технический результат: упрощение способа, сокращение его длительности и повышение выхода коротких РНК.

Поставленная задача достигается предлагаемым способом, заключающимся в следующем.

Образец биологической жидкости подвергают двухстадийной денатурации при помощи буферного раствора, содержащего хаотропный агент (гуанидин изтиоцианат), и органических растворителей (спирт, хлороформ). Для первичной денатурации белковых комплексов и инактивации ферментов, расщепляющих РНК, к образцу биологической жидкости добавляют два объема буферного раствора, содержащего 6,0-6,75 М гуанидин изотиоцианат, 15 мМ Трис-ацетат, pH 6.5, 1,5% 2-меркаптоэтанол, и инкубируют в течение 5 минут. Для полной денатурации белковых комплексов, а также растворения липопротеиновых комплексов и везикулярных структур к полученной смеси добавляют два объема 96% этанола и равный объем хлороформа, перемешивают и отделяют супернатант центрифугированием. Затем супернатант (денатурированный образец биологической жидкости) наносят на стекловолоконный сорбент, например на колонку «Биосилика», (BioSilica Ltd, Россия), при помощи фильтрационной установки либо центрифуги. Колонку дважды отмывают от несвязавшихся биополимеров буферным раствором, содержащим 50% этанол, 25% хлороформ, 1 М гуанидин изотиоцианат, 2,5 мМ Трис-ацетат, pH 6.5, 1% 2-меркаптоэтанол. Далее сорбент дважды промывают от избытка химических агентов буферным раствором, содержащим 10 мМ Tris-HCl, pH 7.5, 0,1 М NaCl, 75% этанол, и элюируют короткие РНК с сорбента буферным раствором, содержащим 1-15 мМ бикарбонат натрия, 5-50 мМ раствором этилендиаминтетрауксусной кислоты (ЭДТА), 1% 2-меркаптоэтанол или 0,5-50 мМ ЭДТА, предварительно нагретым до 85-95°C. В результате получают препарат коротких РНК, имеющих длину от 16 до 50 нуклеотидов.

В качестве биологических жидкостей могут выступать плазма крови, сыворотка крови, моча, молоко, спинномозговая жидкость, альвеолярные смывы и т.д.

Определяющими отличительными признаками предлагаемого способа по сравнению с прототипом являются:

1. Образец биологической жидкости подвергают двухстадийной денатурации, при этом на первой стадии к образцу добавляют два объема денатурирующего раствора, содержащего 6,0-6,75 М гуанидин изотиоцианат, 15 мМ Трис-ацетат, pH 6.5, 1,5% 2-меркаптоэтанол, а на второй стадии к полученной смеси добавляют два объема 96% этанола и равный объем хлороформа, что позволяет повысить выход коротких РНК и сократить длительность способа за счет исключения необходимости проведения фенольной экстракции.

2. Отмывку сорбента от несвязавшихся биополимеров осуществляют дважды буферным раствором, содержащим 50% этанол, 25% хлороформ, 1 М гуанидин изотиоцианат, 2,5 мМ Трис-ацетат, pH 6.5, 1% 2-меркаптоэтанол, повторяющим состав денатурирующих растворов, что позволяет дополнительно повысить эффективность выделения коротких РНК.

3. Элюцию коротких РНК с сорбента осуществляют буферным раствором, содержащим 1-15 мМ бикарбонат натрия, 5-50 мМ ЭДТА, 1% 2-меркаптоэтанол или 0,5-50 мМ раствором ЕДТА, предварительно нагретым до 85-95°C, что позволяет повысить выход и сократить время выделения коротких РНК.

Предлагаемый способ имеет следующие преимущества по сравнению с прототипом:

- позволяет выделять короткие РНК без использования фенола с большей эффективностью (~110%) и воспроизводимостью (5% против 20% для фенольной экстракции) по сравнению с использованием традиционных методов фенольной экстракции;

- упрощает процедуру выделения коротких РНК, уменьшает количество стадий обработки образца и позволяет сократить время выделения коротких РНК в 2,7 раза (с 49 до 18 минут).

Сопоставительный анализ заявляемого способа по сравнению с прототипом представлен в таблице 1.

Изобретение иллюстрируется следующими примерами конкретного использования метода

Пример 1.

К 100 мкл плазмы здорового донора прибавляют 200 мкл денатурирующего раствора, содержащего 6 М гуанидин изотиоцианат, 15 мМ Трис-ацетат, pH 6.5, 1,5% 2-меркаптоэтанол, и инкубируют в течение 5 минут. В смесь плазмы и денатурирующего буфера вносят 100 нг 32Р-меченого синтетического рибоолигонуклеотида длиной 22 нуклеотида. К полученной смеси добавляют 600 мкл 96% этанола и 300 мкл хлороформа, перемешивают, инкубируют 5 мин и центрифугируют при 17000 g в течение 5 минут, при этом допускается образование небольшой опалесценции раствора. Супернатант наносят на колонку со стекловолокнистым сорбентом Биосилика (BioSilica Ltd, Россия). Сорбент промывают дважды 300 мкл буфера, содержащего 50% этанол, 25% хлороформ, 1 М гуанидин изотиоцианат, 2,5 мМ Трис-ацетат, pH 6.5, 1% 2-меркаптоэтанол, при центрифугировании при 400 g в течение 1 минуты.

Затем сорбент промывают дважды 300 мкл буфера, содержащего 10 мМ Tris-HCl, pH 7.5, 0,1 М NaCl, 75% этанол, при 400 g в течение 1 минуты. Короткие РНК элюируют буфером для элюции, содержащим 1 мМ бикарбонат натрия, 5 мМ ЭДТА, 1% 2-меркаптоэтанол, в течение 10 мин при комнатной температуре и центрифугируют при 400 g одну минуту и затем при 17000 g одну минуту. В результате получают препарат, представляющий смесь коротких РНК с длиной от 16 до 50 нуклеотидов, с выходом 54,9%.

Эффективность выделения целевого продукта определяют по удельной радиоактивности полученного препарата коротких РНК и аликвот из промежуточных стадий на счетчике бета-частиц по Черенкову.

Пример 2.

Короткие РНК выделяют из плазмы крови аналогично примеру 1 за исключением того, что используют денатурирующий буфер, содержащий 6,75 М гуанидин изотиоцианат, далее сорбент отмывают, как в примере 1, а для элюции коротких РНК используют 1 мМ раствор ЭДТА, предварительно нагретый до 95°C. В результате получают препарат, представляющий смесь коротких РНК с длиной от 16 до 50 нуклеотидов, с выходом 56,0%.

Пример 3.

Короткие РНК выделяли из мочи 20 здоровых доноров при помощи способа-прототипа и предлагаемого способа следующим образом: к 400 мкл мочи прибавляли 800 мкл денатурирующего раствора, содержащего 6,5 М гуанидин изотиоцианат, 15 мМ Трис-ацетат, 15 мМ ЭДТА, pH 6.5, 1,5% 2-меркаптоэтанол, и инкубировали в течение 5 минут. К полученной смеси добавляли 2400 мкл 96% этанола и 1200 мкл хлороформа, перемешивали, инкубировали 1 мин и центрифугировали при 17000 g в течение 5 минут, при этом допускается образование небольшой опалесценции раствора. Супернатант наносили на колонку со стекловолокнистым сорбентом Биосилика (BioSilica Ltd, Россия). Сорбент дважды промывали 300 мкл буфера, содержащего 50% этанол, 25% хлороформ, 1 М гуанидин изотиоцианат, 2,5 мМ Трис-ацетат, pH 6.5, 1% 2-меркаптоэтанол, при центрифугировании при 400 g в течение 1 минуты. Затем сорбент дважды промывали 300 мкл буфера, содержащего 10 мМ Tris-HCl, pH 7.5, 0,1 М NaCl, 75% этанол при 400 g в течение 1 минуты. Короткие РНК элюировали буфером, содержащим 15 мМ бикарбонат натрия, 50 мМ ЭДТА, 1% 2-меркаптоэтанол, в течение 5 мин при комнатной температуре и центрифугировали при 400 g 1 минуту, а затем при 13000 g 1 минуту.

Короткие РНК, выделенные способом-прототипом и предлагаемым способом, подвергали дополнительной очистке для последующего определения концентрации с помощью количественной ОТ-ПЦР. Для этого к полученным элюатам добавляли 30 мкг гликогена, 1/10 объема 3 М ацетатного буфера (NaOAc), pH 7.4 и равный объем изопропанола, инкубировали 30 минут при -20°C и центрифугировали при 13000 g в течение 15 мин при 4°C. Супернатант удаляли, осадок последовательно промывали 75% и 96% этанолом, центрифугируя при 13000 g 5 минут при 4°C. Осадок сушили на воздухе и растворяли в воде.

Выход коротких РНК определяли по концентрации шести микроРНК: miR-16, miR-21, miR-126, miR-125b, miR-183, miR-19b - при помощи количественной ОТ-ПЦР (5). Результаты выделения коротких РНК из мочи способом-прототипом и предлагаемым способом представлены в таблице 2.

Данный пример иллюстрирует, что препараты коротких РНК, выделенные из мочи с использованием предлагаемого способа, пригодны для исследования при помощи количественных молекулярно-биологических методов, например анализа микроРНК при помощи ОТ-ПЦР.

Пример 4.

Короткие РНК выделяли из плазмы крови 20 здоровых доноров при помощи способа-прототипа и предлагаемого способа. Выделение коротких РНК из плазмы с помощью предлагаемого способа проводили следующим образом: к 100 мкл плазмы прибавляли 200 мкл денатурирующего раствора, содержащего 6М гуанидин изотиоцианат, 15 мМ Трис-ацетат, pH 6.5, 1,5% 2-меркаптоэтанол, и инкубировали в течение 5 минут. К полученной смеси добавляли 600 мкл этанола и 300 мкл хлороформа, перемешивали, инкубировали 5 мин и центрифугировали при 17000 g в течение 5 минут, при этом допускается образование небольшой опалесценции раствора. Супернатант наносили на колонку Биосилика (BioSilica Ltd, Россия) под вакуумом. Сорбент дважды промывали 300 мкл буфера, содержащего 50% этанол, 25% хлороформ, 1 М гуанидин изотиоцианат, 2,5 мМ Трис-ацетат, pH 6.5,1% 2-меркаптоэтанол, при 400 g в течение 1 минуты. Затем сорбент дважды промывали 300 мкл буфера, содержащего 10 mM Tris-HCl, pH 7.5, 0,1 М NaCl, 75% этанол, при 400 g в течение 1 минуты. Короткие РНК элюировали 50 мМ раствором ЭДТА, предварительно нагретым до 85°C, в течение 10 мин при комнатной температуре и центрифугировали при 400 g 1 минуту и затем при 17000 g 1 минуту.

Для осаждения коротких РНК к раствору коротких РНК добавляли 30 мкг гликогена, 12 мкл 3 М NaOAc, pH 7.4 и 265 мкл изопропанола, инкубировали 30 минут при -20°C и осаждали короткие РНК центрифугированием при 13000 g в течение 15 мин при 4°C. Супернатант убирали, а осадок последовательно промывали 75% и 96% этанолом, центрифугируя при 7500 g 5 минут при 4°C. Осадок сушили на воздухе и растворяли в воде.

Выход коротких РНК определяли по концентрации шести микроРНК: miR-16, miR-21, miR-126, miR-125b, miR-183, miR-19b - при помощи количественной ОТ-ПЦР. Результаты выделения коротких РНК из плазмы крови способом-прототипом и предлагаемым способом представлены в таблице 3.

Данный пример иллюстрирует, что препараты коротких РНК, полученные из плазмы крови с использованием предлагаемого способа, пригодны для исследования при помощи количественных молекулярно-биологических методов, например анализа микроРНК при помощи ОТ-ПЦР.

Использование предлагаемого способа позволит значительно упростить известные способы выделения коротких РНК, сократить его длительность и повысить выход целевого продукта.

Источники информации

1. de Planell-Saguer М., Rodicio М.С. Analytical aspects of microRNA in diagnostics: A review. // Analytica Chimica Acta. - 2011. - V. 699. - P. 134-52.

2. Peng J., Xia Z., Chen L., Shi M., Pu J., Guo J., Fan Z. Rapid and efficient isolation of high-quality small RNAs from recalcitrant plant species rich in polyphenols and polysaccharides. // PLoS One. - 2014. - V. 9. - P. e95687.

3. Sedlackova Т., Repiska G., Minarik G. Selection of an optimal method for coisolation of circulating DNA and miRNA from the plasma of pregnant women. // Clin. Chem. Lab. Med. - 2014.

4. Chomczynski P., Sacchi N. The single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. // Nature Protocols. - 2006. - V. 1. - P. 581-585.

5. Chen C., Ridzon D.A., Broomer A.J. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. // Nucleic Acids Res. - 2005. - V. 33. - P. e179.

1. Способ выделения коротких РНК из биологических жидкостей, включающий обработку образца денатурирующим буферным раствором, сорбцию коротких РНК на стекловолоконном сорбенте в присутствии хаотроптного агента с последующей отмывкой сорбента от несвязавшихся биополимеров и химических реагентов и элюцией целевого продукта, отличающийся тем, что образец биологической жидкости подвергают двухстадийной денатурации, при этом на первой стадии к образцу добавляют два объема денатурирующего буферного раствора, содержащего 6,0-6,75М гуанидин изотиоцианат, 15 мМ Трис-ацетат, pH 6.5, 1,5% 2-меркаптоэтанол, а на второй стадии к полученной смеси добавляют два объема 96% этанола и равный объем хлороформа с последующим перемешиванием и отделением осадка центрифугированием, отмывку сорбента от несвязавшихся биополимеров осуществляют дважды буферным раствором, содержащим 50% этанол, 25% хлороформ, 1М гуанидин изотиоцианат, 2,5 мМ Трис-ацетат, pH 6.5, 1% 2-меркаптоэтанол, а элюцию целевого продукта с сорбента осуществляют буферным раствором, содержащим 1-15 мМ бикарбонат натрия, 5-50 мМ ЭДТА, 1% 2-меркаптоэтанол или 0,5-50 мМ ЭДТА, предварительно нагретым до 85-95°C.

2. Способ по п. 1, отличающийся тем, что используют стекловолокнистый сорбент производства «Biosilica».

3. Способ по п. 1, отличающийся тем, что отмывку сорбента от химических реагентов осуществляют дважды буферным раствором, содержащим 10 мМ Tris-HCl, pH 7.5, 0,1 М NaCl, 75% этанол.



 

Похожие патенты:

Представленное изобретение относится к области биотехнологии и касается способа обнаружения провируса лейкоза крупного рогатого скота. Охарактеризованный способ включает выявление фрагмента LTR (Long Terminal Repeat) - последовательности провируса лейкоза.

Изобретение относится к биохимии. Описан способ обнаружения присутствия или отсутствия нескольких серотипов вируса папилломы человека (ВПЧ) в биологическом образце с помощью многоканальной системы анализа, где указанная система анализа обнаруживает большее количество серотипов, чем существует каналов обнаружения.

Изобретения относятся к области ДНК-генеалогии и касаются способа определения гаплогрупп Y-хромосомы человека, тест-системы и олигонулкотидных праймеров. Охарактеризованный способ осуществляют в два этапа.

Изобретение относится к области медицины и предназначено для определения риска развития рака тела матки у женщин с гиперпластическими процессами эндометрия. Осуществляют выделение ДНК из периферической венозной крови, проводят генотипирование гена APOE, выявляют полиморфные аллели APOE*2, APOE*3, APOE*4 и при наличии генотипов, содержащих аллели APOE*2 прогнозируют высокий риск рака эндометрия.
Изобретение относится к медицине, а именно к способу прогнозирования развития профессиональных гиперкератозов. Сущность способа состоит в том, что выделяют ДНК из лимфоцитов периферической венозной крови, проводят генотипирование полиморфизма rs1625895 гена ТР53 методом полимеразной цепной реакции с последующим рестрикционным анализом.

Предложенная группа изобретений относится к области медицины, молекулярной биологии и биотехнологии. Предложен способ определения чувствительности клеток рака легкого к цисплатину, включающий определение уровня экспрессии генов MLH1, ERCC1, DDB2, AKR1B1, FTL в зависимости от IC50 цисплатина для известных клеточных линий, построение градуировочной прямой зависимости IC50 цисплатина для этих клеточных линий от полученного уровня экспрессии указанных генов и гибридизацию на микрочипе.
Изобретение относится к области биохимии, в частности к способу идентификации изменений в экспрессии генов, характерных для старения, в выбранной ткани. Выбранная ткань представляет собой сердечную, мышечную, мозговую или жировую ткань.

Изобретение относится к области молекулярной биологии и может быть использовано в диагностике кардиомиопатий различной природы. Предложен набор синтетических олигонуклеотидов для выявления мутаций кодирующей части гена десмина (DES), ассоциированных с кардиомиопатиями.

Изобретение относится к области биотехнологии, конкретно к ингибиторам сигнального пути AXL, и может быть использовано в медицине. Получают растворимый вариант полипептида AXL без трансмембранного домена AXL, который содержит по меньшей мере одну модификацию аминокислоты в положении номер n, где n выбран из 32, 72, 87, 92 или 127 или их сочетание, где n+7 соответствует нумерации SEQ ID NO: 1 - последовательности AXL дикого типа, в котором указанная модификация повышает сродство связывания полипептида AXL со специфически задерживающим рост белком 6 (GAS6), которое, по меньшей мере, примерно в 2 раза сильнее, чем сродство полипептида AXL дикого типа.

Изобретение относится к области биохимии, в частности к набору олигонуклеотидных праймеров и флуоресцентно-меченого зонда для идентификации Burkholderia pseudomallei и дифференциации от возбудителя сапа методом полимеразной цепной реакции с флуоресцентной детекцией.

Настоящее изобретение относится к биотехнологии и представляет собой конъюгат для внутриклеточной доставки миРНК, содержащий миРНК, которая посредством ковалентной связи конъюгирована с одной стороны с гидрофильным соединением, например, с ПЭГ, а с другой стороны с гидрофобным соединением, например с холестерином.

Изобретение относится к области биохимии, в частности к способам получения растения с повышенной устойчивостью к засухе и действию солей по сравнению с диким видом растения путем снижения экспрессии/функции белка-фактора транскрипции у растения.

Изобретения относятся к области ДНК-генеалогии и касаются способа определения гаплогрупп Y-хромосомы человека, тест-системы и олигонулкотидных праймеров. Охарактеризованный способ осуществляют в два этапа.

Настоящее изобретение относится к биотехнологии и представляет собой очищенную рекомбинантную уратоксидазу (уриказу), характеризующуюся содержанием тетрамеров и октамеров 95% и более от общего количества её молекул.

Изобретение относится к области молекулярной биологии и может быть использовано в диагностике кардиомиопатий различной природы. Предложен набор синтетических олигонуклеотидов для выявления мутаций кодирующей части гена десмина (DES), ассоциированных с кардиомиопатиями.

Изобретение относится к области молекулярной биологии и может быть использовано в диагностике кардиомиопатий различной природы. Предложен набор синтетических олигонуклеотидов для выявления мутаций кодирующей части гена десмина (DES), ассоциированных с кардиомиопатиями.

Изобретение относится к области биохимии. Предложена конкатемерная молекула некодирующей нуклеиновой кислоты, содержащая по меньшей мере четыре одноцепочечных участка с неметилированными CG-мотивами, для модуляции активности иммунной системы человека и животного.

Изобретение относится к области кардиологии и касается набора синтетических олигонуклотидов. Представленный набор используется для выявления мутаций кодирующей части генов NKX2.5, CFC1, GATA4, ассоциированных с орфанной моногенной патологией, лежащей в основе семейных форм врожденных пороков сердца.
Изобретение относится к области биотехнологии и касается способа выявления и генотипирования бактерии Pasteurella multocida. Предложенный способ включает проведение ПЦР с электрофоретической детекцией результатов, перенос продукта амплификации на гель и оценку проведения реакции.

Настоящее изобретение относится к биотехнологии, молекулярной медицине, в частности генной инженерии. Описаны искусственные ДНК-конструкции, демонстрирующие высокую активность транскрипционного промотора человека, с которого осуществляется экспрессия расположенной ниже произвольной нуклеотидной последовательности, транскрибируемой РНК-полимеразой II.

Изобретение относится к области генной инженерии и биотехнологии и представляет собой рекомбинантную плазмиду pET40CmAP/CGL, определяющую синтез гибридного бифункционального полипептида CmAP/CGL со свойствами высокоактивной щелочной фосфатазы морской бактерии Cobetia marina (СmАР) и галактозоспецифичного лектина мидии Crenomytilus grayanus (CGL).
Наверх