Способ парофазного определения массовой концентрации четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана в донных отложениях методом газовой хроматографии

Изобретение относится к области аналитической химии и может быть использовано для определения содержания ЛХС (летучих хлорорганических соединений): четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана в донных отложениях. Способ определения содержания ЛХС в донных отложениях с применением анализа равновесного пара включает определение ЛХС на капиллярной хроматографической колонке в потоке газа-носителя, представляющем собой азот, образование и регистрацию пламенно-ионизационным детектором исследуемых ионов, образующихся в пламени. При этом готовят основной раствор с концентрацией ЛХС 8 мг/см3, хорошо сохраняющийся 2 месяца при температуре от -2°C до -10°С, готовят промежуточный раствор с концентрацией ЛХС 10 мг/дм3 разведением основного раствора водой очищенной. Затем готовят градуировочные растворы для диапазона концентраций ЛХС 0,05-2,5 мг/дм3 разведением водой очищенной промежуточного раствора, градуируют хроматограф. Далее вводя в него предварительно отобранную паровую фазу градуировочных растворов, строят градуировочный график. Причем после термостатирования исследуемого образца отбирают паровую фазу и парофазным шприцем вводят в испаритель хроматографа, полученные данные обрабатывают компьютерной программой GCsolution, которой комплектуется хроматографический комплекс SHIMADZU GC-2010, и получают качественную идентификацию и количественные показания прибора. Содержание каждого компонента Ci, мг/кг, сухого вещества вычисляют математически. Техническим результатом является повышение логичности и точности анализа, достижение приемлемых результатов повторяемости (сходимости) параллельных проб и удобство выполнения анализа в условиях экологического мониторинга. 6 табл, 2 ил.

 

Изобретение относится к области аналитической химии и может быть использовано для определения содержания ЛХС (летучих хлорорганических соединений): четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана в донных отложениях.

Способ определения в донных отложениях четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана методом газовой хроматогрфии, с определением указанного компонента на капиллярной хроматографической колонке в потоке газа-носителя, представляющем собой азот; с образованием и регистрацией пламенно-ионизационным (ПИД), (FID) детектором исследуемых ионов, образующихся в пламени, и обработкой результатов измерений методом абсолютной градуировки и последующим математическим расчетом, чтобы учесть массовую долю влаги в исследуемом образце.

Принцип действия детектора пламенно-ионизационного детектора (ПИД), (FID) заключается в изменении силы тока в плазме водородно-кислородного пламени при попадании в нее горючих соединений углерода.

Известен способ хромато-масс-спектрометрического определения летучих органических соединений в донных отложениях. (Хромато-масс-спектрометрическое определение летучих органических соединений в донных отложениях. Дис. канд., автореферат. URL: http://www.dissercat.com/content/khromato-mass-spektrometricheskoe-opredelenie-letuchikh-organicheskikh-soedinenii-v-donnykh- - дата обращения 15.11.2014 г.)

Способ, основанный на парофазной экстракции с последующим хромато-масс-спектрометрическим определением каждого компонента,

методика выполнения измерения массовых концентраций летучих органических соединений в донных отложениях методом статического парофазного анализа в сочетании с хромато-масс-спектрометрией (ФР.1.31.2009.06313).

Идентифицированы ароматические соединения, хлорированные и бромированные алифатические и ароматические углеводороды в смеси (51 ингредиент) по масс-спектрам, установлены характеристические ионы и параметры удерживания, выбраны временные окна для селективного ионного детектирования этих соединений.

Изучены и определены рабочие условия статического парофазного анализа донных отложений: навеска - 2 г, температура термостатирования - 95°C, время термостатирования - 50 минут.

Однако реализовать такой способ финансово дорого и этот способ не обеспечивает получение точных результатов определения четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана. Большое количество компонентов, которое определяет способ, часто не помогает, а мешает оператору достоверно определить такие компоненты, как четыреххлористый углерод, хлороформ, метиленхлорид, 1,2-дихлорэтан, 1.1.2-трихлорэтан. Хроматограмма исследуемой пробы, которая содержит большое количество исследуемых компонентов, в которой присутствуют еще и многочисленные примеси, может быть ошибочно интерпретирована. В условиях лаборатории такие компоненты, как четыреххлористый углерод, хлороформ, метиленхлорид, имеют тенденцию к увеличению своих концентраций, за счет того, что в любой лаборатории находится значительное количество растворителей, которые создают дополнительный фон веществ, которые предстоит исследовать. Для таких компонентов необходимо учитывать подобное влияние условий лаборатории. Дополнительно выполнять анализ холостой пробы. Кроме того, в описанном способе, длительная пробоподготовка - термостатирование пробы, занимает 50 минут.

Ближайшим аналогом является ПНД Ф 16.2.2:2.3:3.26-02 (Методика выполнения измерений массовой концентрации хлористого метила, винилхлорида, виниленхлорида, метиленхлорида, хлороформа, четыреххлористого углерода, 1,2-дихлорэтана, бензола, трихлорэтилена, 1.1.2-трихлорэтана, толуола, орто-ксилола, суммарного содержания мета- и пара-ксилолов в твердых и жидких отходах производства и потребления, осадках, шламах, активном иле, донных отложениях газохроматографическим методом. ЦКП "Химический анализ и идентификация веществ" (ЦКП ХАиИВ) URL: http://www.ckp-rf.m/ckp/3148/ дата обращения 15.11.2014 г.) принято за прототип.

Однако, в пункте 8.3.1.1 Приготовление раствора органических соединений методики ПНД Ф 16.2.2:2.3:3.26-02, в качестве растворителя используется метиленхлорид. При использовании этого растворителя невозможно будет достоверно определить исследуемый компонент - метиленхлорид. Кроме того, растворитель метиленхлорид легко летучий и сохранить смесь легко летучих компонентов в таком растворе в течение месяца не удается. Методика не использует эффект высаливания, чтобы достичь более полного извлечения исследуемых веществ из донных отложений. В пункте методики 8.3.2 Проведение градуировки хроматографа, в пп. 8.3.2.3, пробу выдерживают 15 минут при температуре 100°C. При такой высокой температуре сложно добиться приемлемой сходимости результатов для анализа параллельных проб. Исследования в методике осуществляются с использованием набивной колонки, что менее удобно, так как отнимает у оператора дополнительное время и требует затрат реактивов газа и сорбента.

Технической задачей, на решение которой направлено заявленное изобретение, является повышение логичности и точности анализа, достижение лучших результатов повторяемости (сходимости) параллельных проб и удобство выполнения анализа в условиях экологического мониторинга.

Предложенный способ позволяет решить поставленную задачу, повысить точность анализа компонентов загрязнения донных отложений: четыреххлористого углерода, хлороформа, метиленхлорида, 1,2-дихлорэтана, 1.1.2-трихлорэтана, за счет снижения потерь определяемых веществ при пробоподготовке, достигнуть приемлемых показателей повторяемости за счет установления оптимальной температуры прогрева исследуемой пробы. Увеличить время хранения основного раствора до двух месяцев при температуре от -2°C до -10°C, заменив легко летучий растворитель на менее летучий и более вязкий.

Способ позволяет определять исследуемые ЛХС в диапазоне измерений содержания компонента 0,05-2,5 мг/кг.

Приготовление градуировочных образцов

В качестве основного раствора ЛХС используют ГСО каждого компонента (с содержанием основного вещества 100% - 99,9%, если содержание основного вещества меньше, это учитывают) в виде раствора этиленгликоля с концентрацией 8 мг/см3, что показано в таблице 1.

Этиленгликоль - вязкое вещество, хорошо удерживает летучие компоненты, что позволяет хранить основной раствор 2 месяца, при температуре от -2°C до -10°C. ГСО можно отмерить объемным способом, используя плотность вещества и формулу пересчета. Массовые концентрации основного раствора и градуировочных образцов (при разведении) рассчитывают по формуле (1)

где C0 - концентрация исходного раствора, V0 - объем исходного раствора, Cx - концентрация приготовленного раствора, Vx - объем приготовленного раствора.

Пример. Для исследуемого компонента - хлороформа:

Cx=(1,490 гр/см3·0,14 см3)/25 см3=0,008344 гр/см3 (8 мг/см3).

Срок хранения основного раствора 2 месяца при температуре от -2°C до-10°C.

Промежуточный раствор готовят разведением из основного раствора с использованием очищенной (реагентной) воды:

Cx=(8 мг/см3·0,125 см3)/ 100 см3=10,0 мг/дм3, (Табл. 2). Раствор не хранится.

Градуировочные образцы готовят с использованием очищенной (реагентной) воды.

Пример. Градуировочный образец №1 - в мерную колбу вместимостью 100 см3 наливаем воды до метки и отбираем объем 0,5 см3. Затем в колбу вносим 0,5 см3 промежуточного раствора и быстро перемешиваем. Для летучих компонентов важно делать разведение именно так, чтобы было меньше потерь определяемых веществ. Приготовление градуировочных образцов представлено в таблице 3.

Установление градуировочной характеристики:

5 см3 градуировочной смеси помещают в виалу (флакон) с натрия хлоридом (1,5 г, прокаленного 400°C), герметично укупоривают, сразу перемешивают и термостатируют в «биндере» (термостат) при Т 80°C - 15 минут. Затем подогретым парофазным шприцем отбирают 1 см3 газовой фазы (0,5 см от поверхности раствора). Вводят в испаритель хроматографа.

ПАРАМЕТРЫ МЕТОДА: SHTMADZU GC-2010:

газ носитель - азот, сжатый по ГОСТ 9293.

колонка капиллярная Nukol, длиной 60 метров, диаметром 0,32 мм, толщиной пленки 0,25 мкм.

детектор FID

Деление потока 5:1; Температура INJ -190°C; поток по колонке 1,0 мл/мин; Температурный режим колонки: 70°C-10,0 минут; затем подъем температуры со скоростью 20°C / мин до 160°C - 2 минуты. Температура детектора FID - 200°C; время метода - 16,5 минут. Время удерживания исследуемых веществ: четыреххлористого углерода - 7.397 минут; метиленхлорида - 7,894 минут; хлороформа - 9,450 минут; 1,2-дихлорэтан - 10,650 минут; 1.1.2-трихлорэтан - 15.837 минут.

На капиллярной колонке для анализа во всем диапазоне используют одну градуировочную шкалу, полученную с помощью растворов №№1-7. Градуировочные (калибровочные) растворы не хранятся.

Проведение анализа исследуемых проб донных отложений.

На анализ отбирается не менее 1 кг донных отложений (объединенная проба). Исследуемую пробу тщательно перемешивают и берут навеску 100 г для определения массовой доли влаги. Затем берут навеску 5 г для определения массовой концентрации ЛХС. Массовую долю влаги донных отложений определяют как отношение массы воды, удаленной из осадка высушиванием до постоянной массы к массе влажного осадка формула (2)

где m1 - масса влажного осадка, г, как разность постоянных весов тары с влажным осадком и пустой фарфоровой чашки;

m2 - масса высушенного при 105°C осадка, г, как разность постоянных весов тары с высушенным осадком и пустой фарфоровой чашки.

Навеску 5 г донных отложений помещают во флакон с 1,5 г натрия хлорида, перемешивают, термостатируют при Т 80°C - 15 минут отбирают газовую фазу и вводят ее в испаритель хроматографа.

Концентрацию вещества в донных отложениях (мг/кг) определяют по соответствующим градуировочным графикам с помощью компьютерной программы GCsolution, которой комплектуется хроматографический комплекс SHIMADZU GC-2010 и получают качественную идентификацию и количественные показания прибора. Содержание каждого компонента, Ci, мг/кг сухого вещества, вычисляют по формуле (3)

где m1×(1-W) - масса сухого вещества, взятого для анализа с учетом влажности, г.

V - объем пробы над которым анализируют паровую фазу, см3.

Результатом измерения является среднее арифметическое результатов двух параллельных определений. Перед обработкой результатов необходимо проанализировать «холостую пробу» реагентной воды с натрия хлоридом, чтобы убедиться в отсутствии помех и загрязнений. В случаях, когда концентрация определяемых ЛХС в пробе более 80% верхнего значения диапазона измерений, берут меньшую навеску пробы и доводят реагентной водой до 5 см3 или уменьшают объем вводимой паровой фазы.

Результаты математической обработки данных по итогам практической работы представлены для концентрации ЛХС 0,1 мг/кг в таблице 4, для концентрации ЛХС 1,0 мг/кг в таблице 5, для концентрации ЛХС 2,0 мг/кг в таблице 6.

Данные по итогам проведенных практических исследований

Величины стандартного среднеквадратического отклонения повторяемости для исследуемых ЛХС.

Диапазон измерений содержания ЛХС 0,05-2,5 мг/кг.

Способ парофазного определения массовой концентрации четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана в донных отложениях методом газовой хроматографии.

Примеры реализации способа

Пример 1. Типовая хроматограмма паровой фазы, содержащей четыреххлористый углерод, метиленхлорид, хлороформ, 1,2-дихлорэтан, 1.1.2-трихлорэтан (см. фиг. 1, табл. 7).

На фиг. 1 - ЛХС в донных отложениях. Прибор GC SHIMADZU-2010 с детектором FID. Исследуемая концентрация 1,0 мг/кг; Пр-1.

Условия измерений:

температура воздуха - 22°C

относительная влажность воздуха - 38%

частота переменного тока - 50 Гц

напряжение в сети - 220 В

атмосферное давление - 100,0 кПа

Пример 2. Типовая хроматограмма паровой фазы, содержащей четыреххлористый углерод, метиленхлорид, хлороформ, 1,2-дихлорэтан, 1.1.2-трихлорэтан (см. фиг. 2, табл. 8).

На фиг. 2 - ЛХС в донных отложениях. Прибор GC SHIMADZU-2010 с детектором FID. Исследуемая концентрация 2,0 мг/кг; Пр-2.

Таким образом, в соответствии с требованиями к СКО н/б 5% соблюдается доверительный интервал при вероятности Р=0,95, также практические испытания подтверждают высокую точность результатов к заданным концентрациям анализа, достигнута приемлемость результатов повторяемости (сходимости). Повышается удобство выполнения анализа, что в условиях экологического мониторинга позволяет выполнять большее количество анализов.

В отличие от аналогов предлагаемый способ обеспечивает высокую точность, приемлемые показатели повторяемости (сходимости), экономичность и простоту определения содержания четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана в донных отложениях.

Способ определения количественного содержания ЛХС (летучих хлорорганических соединений): четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана в донных отложениях, с использованием газовой хроматографии, с применением анализа равновесного пара, включающий определение ЛХС на капиллярной хроматографической колонке в потоке газа-носителя, представляющем собой азот; образование и регистрацию пламенно-ионизационным детектором исследуемых ионов, образующихся в пламени, отличающийся тем, что готовят основной раствор с концентрацией ЛХС 8 мг/см3, хорошо сохраняющийся 2 месяца при температуре от -2°C до -10°C, готовят промежуточный раствор с концентрацией ЛХС 10 мг/дм3 разведением основного раствора водой очищенной, готовят градуировочные растворы для диапазона концентраций ЛХС: 0,05-2,5 мг/дм3 разведением водой очищенной промежуточного раствора, градуируют хроматограф, вводя в него предварительно отобранную паровую фазу градуировочных растворов, строят градуировочный график, после термостатирования исследуемого образца отбирают паровую фазу и парофазным шприцем вводят в испаритель хроматографа, полученные данные обрабатывают компьютерной программой GCsolution, которой комплектуется хроматографический комплекс SHIMADZU GC-2010, и получают качественную идентификацию и количественные показания прибора, содержание каждого компонента Ci, мг/кг, сухого вещества вычисляют математически.



 

Похожие патенты:

Потоковый газовый хроматограф предназначен для определения качественного и количественного состава различных газов, например природного газа на технологических потоках предприятий газовой, нефтеперерабатывающей и других отраслей промышленности.

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды.

Изобретение относится к аналитической химии, конкретно к неподвижным фазам для разделения веществ методом капиллярной газовой хроматографии, и может быть использовано в анализе различных классов химических веществ.

Изобретение относится к области газового анализа и может быть использовано для градуировки газоанализаторов и газовых хроматографов и получения градуировочных газовых смесей при анализе объектов окружающей среды, природного и попутного нефтяного газа в различных отраслях промышленности.

Изобретение относится к области физико-химического анализа, а именно к измерению удельной поверхности (УП) дисперсных, пористых и компактных материалов. Предварительно перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют.

Изобретение относится к сельскому хозяйству и может быть использовано для определения остаточных количеств биоорганического соединения (д.в. поли-NN-диметил-3,4 метилпиролидиния галогенида (хлорида)) с ярко выраженными бактерицидными и фунгипротекторными свойствами в растительных объектах (яблоки, груши, айва, сливы, персики).

Изобретение относится к области определения сорбционных характеристик веществ, а именно к способам измерения величины сорбции и построения изотерм сорбции газа (пара) в различных мембранных материалах.

Изобретение относится к аналитической химии и касается количественного определения тетрациклина в молоке и молочных продуктах. Способ определения тетрациклина в молоке и молочных продуктах заключается в предварительном сорбционном концентрировании тетрациклина природным цеолитом и последующем определении данного аналита методом высокоэффективной жидкостной хроматографии с ультрафиолетовым детектированием при длине волны 350 нм.
Изобретение относится к области контроля перемещающихся своим ходом транспортных средств и может быть использовано для досмотра с целью обнаружения скрытых предметов, веществ и материалов, запрещенных к перевозке.

Изобретение относится к области аналитической химии и может быть использовано в химической, фармацевтической и других отраслях промышленности при анализе парабенов методом высокоэффективной жидкостной хроматографии (ВЭЖХ).
Изобретение относится к аналитической химии, а именно к способам определения карбоновых кислот в водных растворах глиоксаля. В процессе синтеза глиоксаля образуются примеси гликолевой и глиоксалевой кислот, которые мешают дальнейшему его использованию, так как наряду с последним вступают в реакции конденсации, сильно загрязняя продукты на основе глиоксаля. С целью анализа разделения кислот проводят на колонке Zorbax Sb-Aq размерами 150×3 мм, размер зерна 5 мкм. При этом адсорбировавшиеся на колонке кислоты элюируют смесью: 99% вода, 1% ацетонитрил+Н3PO4, pH=2, со скоростью 0,5 мл/мин. Причем в качестве детектора используют спектрофотометрический детектор с длиной волны 210 нм с последующим определением площадей хроматографических пиков глиоксалевой и гликолевой кислот в водном растворе глиоксаля. Техническим результатом является разработка способа хроматографического определения гликолевой и глиоксалевой кислот с целью определения их массовой доли в растворе глиоксаля. 1 пр.
Наверх