Способ использования оптической медицинской навигационной системы для визуализации и количественной оценки качества репозиции отломков при переломе кости таза

Изобретение относится к травматологии и ортопедии и может быть применимо для использования оптической медицинской навигационной системы для визуализации и количественной оценки качества репозиции отломков при переломе кости таза. На подвижной части кости таза устанавливают третий позиционер с пассивными маркерами. На рентгеновском компьютерном томографе проводят регистрацию изображений неподвижной части кости таза с установленным на ней референтным позиционером с пассивными маркерами и подвижной части кости таза с установленным на ней третьим позиционером с пассивными маркерами. На рабочей станции рентгеновского компьютерного томографа проводят обработку изображений и строят 3D сегментированное изображение неподвижной части кости таза с установленным на ней референтным позиционером с пассивными маркерами и подвижной части кости таза с установленным на ней третьим позиционером с пассивными маркерами, а также области перелома. Результаты обработки по вычислительной сети передают в компьютер оптической медицинской навигационной системы и отображают на экране монитора хирургу для планирования и последующего управления хирургическими инструментами в ходе операции. На экране монитора на 3D сегментированном изображении неподвижной части кости таза и подвижной части кости таза хирургом в области перелома указываются точки соответствия, которые при совмещении подвижной части кости таза и неподвижной части кости таза во время операции необходимо максимально сблизить. Во время операции с использованием оптической медицинской навигационной системы производят геометрическую привязку референтного позиционера с пассивными маркерами и третьего позиционера с пассивными маркерами, установленных на пациенте и видимых стереовидеокамерами оптической медицинской навигационной системы к сегментированным 3D изображениям референтного позиционера с пассивными маркерами и третьего позиционера с пассивными маркерами и соответствующим им сегментированным неподвижной части кости таза и подвижной части кости таза. Во время операции «ручными» действиями сближают подвижную часть кости таза с неподвижной частью кости таза и устанавливают их в положение для последующей фиксации винтом. На монитор в реальном масштабе времени выводят 3D сегментированное изображение неподвижной части кости таза и подвижной части кости таза и информацию о расстояниях между точками соответствия в области перелома, которые необходимо максимально сблизить для обеспечения совмещения неподвижной части кости таза и подвижной части кости таза. Устанавливают второй позиционер с пассивными маркерами на дрель. Для прохождения спицы через желаемые области в неподвижной части кости таза и подвижной части кости таза задают направление засверливания спицы по схематическому изображению пассивных маркеров первого позиционера с пассивными маркерами, расположенных на направляющей спицы, и глубину засверливания спицы по схематическому изображению пассивных маркеров второго позиционера с пассивными маркерами относительно 3D изображения неподвижной части кости таз и подвижной части кости таза, отображаемых на экране монитора оптической медицинской навигационной системой. Далее засверливают дрелью спицу в неподвижную часть кости таза и подвижную часть кости таза. Удаляют направляющую спицу. По спице устанавливают скрепляющий подвижную часть кости таза и неподвижную часть кости таза винт. Удаляют спицу и проводит зашивание раны. Изобретение позволяет уменьшить лучевую нагрузку на пациента, увеличить функциональные возможности способа. 1 з.п. ф-лы, 3 ил.

 

Способ использования оптической медицинской навигационной системы для визуализации и количественной оценки качества репозиции отломков при переломе кости таза относится к способам планирования и контроля выполнения хирургических операций и может быть использован при проведении хирургических операций в травматологии для обеспечения количественного контроля и визуализации в режиме реального времени совмещения отломков кости таза и движения хирургических инструментов в операционном поле на основе 3D рентгеновских компьютерных томографических изображений, полученных при предварительных обследованиях пациента.

Известен способ: «Three - Dimensional Fluoroscopy - Navigated Percutaneous Screw Fixation of Acetabular» Fractures. // Philipp Schwabe, Burak Altintas, Klaus-Dieter Schaser, Claudia Druschel, Christian Kleber, Norbert P. Haas, Sven Maerdian. Journal of Orthopaedic Trauma, 2014, - Volume 28, - Number 12, - p. 700-706.

Этот способ включает контроль во время операции положения неподвижной части кости таза, подвижной части кости таза и области перелома по 3D рентгеновскому изображению, установку референтного позиционера с пассивными маркерами на неподвижной части кости таза, определение по 3D рентгеновскому изображению, через какие области неподвижной части кости таза и подвижной части кости таза во время операции будет осуществляться фиксация подвижной части кости таза к неподвижной части кости таза винтом, установку первого позиционера с пассивными маркерами на направляющую спицы, контроль направления спицы с помощью оптической медицинской навигационной системы по схематическому изображению на экране монитора первого позиционера с пассивными маркерами, установленного на направляющей спицы, засверливание дрелью спицы в неподвижную часть кости таза и подвижную часть кости таза. Контроль глубины засверливания спицы осуществляется по постоянно регистрируемому 3D рентгеновскому изображению конца спицы относительно неподвижной части кости таза и подвижной части кости таза. После засверливания спицы проводят удаление направляющей спицы, установку скрепляющего подвижную часть кости таза и неподвижную часть кости таза винта, удаление спицы и зашивание раны. Этот способ выбран в качестве прототипа предложенного решения.

Недостаток этого способа заключается в том, что во время операции многократно используется регистрация 3D рентгеновского изображения области перелома кости таза, отломков и хирургических инструментов. В результате этого происходит многократное рентгеновское облучение пациента и медицинского персонала, что является вредным и нежелательным. К тому же 3D рентгеновское изображение не является изображением высокого качества, контраста, четкости и разрешающей способности и не позволяет видеть мелкие детали костей. Кроме того, данный способ не дает количественной оценки сближения неподвижной и подвижной частей кости таза, а только визуализируемое на экране рентгеновского прибора расположение костей относительно друг друга. Это снижает функциональные возможности, безопасность и точность репозиции отломков известного способа.

Технический результат изобретения заключается в том, что во время операции получают количественную оценку, характеризующую точность совмещения неподвижной части кости таза и подвижной части кости таза в области перелома, что приводит к расширению функциональных возможностей предложенного способа за счет повышения точности репозиции неподвижной и подвижной частей кости таза. Предложенный способ позволяет значительно снизить лучевую нагрузку на пациента, так как пациент подвергается только предварительному обследованию на рентгеновском компьютерном томографе. Медицинский персонал во время выполнения операции вообще не подвергается рентгеновскому облучению.

Указанный технический результат достигается тем, что в способе использования оптической медицинской навигационной системы для визуализации и количественной оценки качества репозиции отломков при переломе кости таза используется обследование пациента на рентгеновском компьютерном томографе с установленными на неподвижной и подвижной частях кости таза пациента позиционеров с пассивными маркерами, построение 3D сегментированного изображения неподвижной части кости таза и подвижной части кости таза и установленных на них позиционерах с пассивными маркерами. Осуществляется пространственная геометрическая привязка изображений позиционеров, установленных на неподвижной части кости таза и подвижной части кости, а также направляющих спицы и засверливающей ее дрели, видимых стереовидеокамерами, и 3D сегментированных изображений, что обеспечивает слежение в реальном масштабе времени за геометрическим расстоянием между указанными хирургом в области перелома точками соответствия на неподвижной и подвижной частях кости таза, которые во время хирургической операции необходимо максимально сблизить, чтобы ликвидировать щель в области перелома

На фиг. 1 изображена схема приборного комплекса оптической медицинской навигационной системы для реализации предложенного способа.

На фиг. 2 изображено 3D сегментированное изображение неподвижной и подвижной частей кости таза с установленными на них позиционерами с пассивными маркерами. В области перелома указаны точки соответствия.

На фиг. 3 изображено 3D сегментированное изображение кости таза с позиционерами с пассивными маркерами после фиксации отломков винтом.

Приборный комплекс (оптическая медицинская навигационная система) для реализации предложенного способа включает оптическую медицинскую навигационную систему 1 (фиг. 1), содержащую компьютер 2, монитор 3 и стереовидеокамеры 4. Также в состав приборного комплекса входят первый позиционер с пассивными маркерами 9, устанавливаемый на направляющую спицы 7, второй позиционер с пассивными маркерами 10, устанавливаемый на дрель 11, референтный позиционер с пассивными маркерами 12 и третий позиционер с пассивными маркерами 13. Приборный комплекс использует зарегистрированные на рентгеновском компьютерном томографе 5 и обработанные на входящей в его состав рабочей станции 6 изображения.

Стереовидеокамеры 4 способны обеспечивать захват стереоизображения операционного поля на расстоянии 1,5 м и объемом не менее 1 м. Для увеличения контраста изображения пассивных маркеров и более качественного выделения пассивных маркеров на получаемом видеоизображении используется инфракрасная подсветка, выполненная светодиодами (не показаны), которые располагаются вокруг обоих объективов стереовидеокамер 4. Для уменьшения негативного влияния осветительных хирургических ламп диапазон пропускания видеокамер 4 установлен от 950 нм, максимальное разрешение видеокамер 2048⋅2048 пикселей. Для одномоментной регистрации изображений с двух видеокамер введена их синхронизация.

В качестве пассивных маркеров используют светоотражающие маркеры, имеющие форму шариков диаметром не менее 9 мм. Программное обеспечение оптической медицинской навигационной системы 1 работает на компьютере 2. Программное обеспечение выполняет геометрическую привязку координат, видимых стереовидеокамерами 4 на теле пациента референтного позиционера с пассивными маркерами 12, установленного на неподвижной части кости таза и третьего позиционера с пассивными маркерами 13, установленного на подвижную часть кости таза 16, с пространственными координатами сегментированных 3D изображений референтного позиционера с пассивными маркерами 12 и соответствующего ему сегментированного изображения неподвижной части кости таза 15 и третьего позиционера с пассивными маркерами 13 и соответствующего ему сегментированного изображения подвижной части кости таза 16. Также программное обеспечение оптической медицинской навигационной системы 1, работающее на компьютере 2, выполняет геометрическую привязку координат, видимых стереовидеокамерами 4, направляющей спицы 8 по установленному на ней первому позиционеру с пассивными маркерами 9 и координат дрели по установленному на ней второму позиционеру с пассивными маркерами 10, с пространственными координатами 3D сегментированного изображения неподвижной части кости таза 15 и подвижной части кости таза 16.

В качестве компьютера 2 может быть использован персональный компьютер с характеристиками не хуже: Intel Core i7-5960X 3.0GHz 8 Cores 20MB.

Ввод данных в приборный комплекс во время операции осуществляется с помощью сенсорного монитора 3 с размером диагонали не менее 60 см.

Предложенный способ реализуется следующим образом.

Хирург выполняет установку референтного позиционера с пассивными маркерами 12 (фиг. 1) на неподвижной части кости таза 15. На подвижной части кости таза 16 устанавливают третий позиционер с пассивными маркерами 13. Позиционеры устанавливают на соответствующие кости таза при местном обезболивании. Затем на рентгеновском компьютерном томографе 5 проводят регистрацию 3D изображения неподвижной части кости таза 15 с установленным на ней референтным позиционером с пассивными маркерами 12 и подвижной части кости таза 16 с установленным на ней третьим позиционером с пассивными маркерами 13. Далее на рабочей станции 6 рентгеновского компьютерного томографа 5 проводят обработку изображений и строят 3D сегментированное изображение (Фиг. 2) неподвижной части кости таза 15 с установленным на ней референтным позиционером с пассивными маркерами 12 и 3D сегментированное изображение подвижной части кости таза 16 с установленным на ней третьим позиционером с пассивными маркерами 13. Результаты обработки по вычислительной сети передаются в компьютер 2 оптической медицинской навигационной системы 1 и отображаются на экране монитора 3 хирургу для планирования операции по выбору направления и глубины засверливания спицы 7 и последующей установки по ней скрепляющего винта 14.

На 3D сегментированном изображении (Фиг. 2) неподвижной части 15 и подвижной части 16 кости таза хирургом в области перелома 17 указываются точки соответствия. Для этого на экране монитора 3 на 3D сегментированном изображении неподвижной части кости таза 15 хирург указывает точки 18, 20, 22 и т.д., на подвижной части кости таза 16 хирург указывает точки 19, 21, 23 и т.д. Для установки точек выбираются характерные анатомические ориентиры на костях в области перелома. Эти точки во время операции для устранения щели в области перелома 17 должны быть максимально совмещены друг с другом следующим образом: точка 18 с точкой 19, точка 20 с точкой 21, точка 22 с точкой 23 и т.д. Для достижения хорошей точности соответствия репозиции отломков достаточно использовать 6-7 пар точек.

Во время операции видеоизображение со стереовидеокамер 4 по USB-интерфейсу передается в компьютер 2, где подвергается математической обработке для вычисления пространственных координат референтного позиционера с пассивными маркерами 12 на неподвижной части кости таза, третьего позиционера с пассивными маркерами 13, первого позиционера с пассивными маркерами 9, установленного на направляющую спицы 8, и третьего позиционера с пассивными маркерами 10, установленного на дрель 11. Далее программное обеспечение оптической стереоскопической навигационной системы 1 производит геометрическую привязку пространственных координат референтного позиционера с пассивными маркерами 12 и третьего позиционера с пассивными маркерами 13, видимых на теле пациенте стереовидеокамерами 4 и схематически отображаемых на экране монитора 3 в процессе их движения в реальном масштабе времени с 3D сегментированными изображениями референтного позиционера с пассивными маркерами 12, соединенного в единое целое с неподвижной частью кости таза 15, и третьего позиционера с пассивными маркерами 13, соединенного в единое целое с подвижной частью кости таза 16.

Хирург во время операции старается сблизить неподвижную часть кости таза 15 и подвижную часть кости таза 16 в области перелома 17 и установить их в оптимальном положении для последующей фиксации винтом 14. При этом программное обеспечение, работающее на компьютере 3 оптической медицинской навигационной системы 1, обеспечивает слежение за перемещением неподвижной части кости таза 15 и подвижной части кости таза 16 как их 3D сегментированных изображений и отображает их перемещения относительно друг друга на экране монитора 3. Также на монитор 3 выводится дополнительная информация о расстояниях в миллиметрах между парами точек соответствия на неподвижной части кости таза 15 и подвижной части кости таза 16 (18-20, 20-22, 21-23 и т.д.), которые необходимо максимально сблизить для обеспечения совмещения неподвижной 15 и подвижной 16 частей таза в области перелома 17.

Далее хирург определяет, через какие области неподвижной части кости таза 15 и подвижной части кости таза 16 во время операции будет осуществляться их фиксация винтом 14.

Затем хирург выполняет установку первого позиционера с пассивными маркерами 9 на направляющую спицы 8 и устанавливает второй позиционер с пассивными маркерами 10 на дрель 11.

Во время операции стереовидеокамеры 4 системы оптической медицинской навигационной системы 1 регистрируют видеоизображение первого позиционера с пассивными маркерами 9 направляющей спицы 7 и второго позиционера с пассивными маркерами 10 дрели 11. Программное обеспечение, работающее на компьютере 3, обеспечивает перерасчет их пространственных координат в координаты 3D сегментированного изображения неподвижной 15 и подвижной 16 частей костей таза и обеспечивает схематическую визуализацию направления и глубины засверливания спицы 7 на мониторе 3.

Хирург задает направление засверливания спицы 7 по схематическому изображению на экране монитора 3 пассивных маркеров первого позиционера с пассивными маркерами 9, расположенного на направляющей спицы 8 относительно 3D сегментированного изображения неподвижной части кости таза 15 и подвижной части кости таза 16, отображаемых на экране монитора 3 оптической медицинской навигационной системы 1. Хирург начинает засверливание спицы 7, контролируя глубину засверливания, наблюдая на экране монитора 3 схематическое изображение конца спицы 7 по второму позиционеру с пассивными маркерами 10, установленного на дрели 11, относительно 3D изображения неподвижной части кости таза 15 и подвижной части кости таза 16. Затем хирург удаляет направляющую спицы 8 и по спице 7 устанавливает скрепляющий подвижную часть кости таза 16 и неподвижную часть кости таза 15 винт 14 (Фиг. 3), удаляет спицу 7 и проводит зашивание раны.

Применение в предложенном способе координируемых в пространстве видимых стереовидеокамерами 4 оптической медицинской навигационной системы 1 референтного позиционера 12, установленного на неподвижную часть кости таза 15, третьего позиционера с пассивными маркерами 13, установленного на подвижную часть кости таза 16, направляющей спицы 8 по установленному на нее позиционеру с пассивными маркерами 9 и дрели 11 по установленному на нее второму позиционеру с пассивными маркерами 10, с построенным 3D сегментированным изображением референтного позиционера 12 и третьего позиционера с пассивными маркерами 13, однозначно связанных с соответствующими неподвижной 15 и подвижной 16 частями костей таза, приводит к возможности контролировать в реальном масштабе времени по изображению на экране монитора 3 направление и глубину засверливания спицы 7, получать количественную оценку, характеризующую точность совмещения неподвижной части кости таза 15 и подвижной части кости таза 16 в области перелома 17, что обеспечивает расширение функциональных возможностей предложенного способа. Предложенный способ позволяет значительно снизить лучевую нагрузку на пациента, так как пациент подвергается только предварительному обследованию на рентгеновском компьютерном томографе.

1. Способ использования оптической медицинской навигационной системы для визуализации и количественной оценки качества репозиции отломков при переломе кости таза, включающий контроль во время операции положения неподвижной части кости таза (15), подвижной части кости таза (16) и области перелома (17), установку референтного позиционера с пассивными маркерами (12) на неподвижной части кости таза (15), определение - через какие области неподвижной части кости таза (15) и подвижной части кости таза (16) во время операции будет осуществляться фиксация подвижной части кости таза (16) к неподвижной части кости таза (15) винтом (14), установку первого позиционера с пассивными маркерами (9) на направляющую спицы (8), засверливание дрелью (11) спицы (7) в неподвижную часть кости таза (15) и подвижную часть кости таза (16), контроль направления спицы (7) с помощью оптической медицинской навигационной системы (1) по схематическому изображению на экране монитора (3) первого позиционера с пассивными маркерами (9), установленного на направляющей спицы (8), после засверливания спицы (7) проводят удаление направляющей спицы (8), установку скрепляющего подвижную часть кости таза (16) и неподвижную часть кости таза (15) винта (14), удаление спицы (7) и зашивание раны, отличающийся тем, что на подвижной части кости таза (16) устанавливают третий позиционер с пассивными маркерами (13), на рентгеновском компьютерном томографе (5) проводят регистрацию изображений неподвижной части кости таза (15) с установленным на ней референтным позиционером с пассивными маркерами (12) и подвижной части кости таза (16) с установленным на ней третьим позиционером с пассивными маркерами (13), на рабочей станции (6) рентгеновского компьютерного томографа (5) проводят обработку изображений и строят 3D сегментированное изображение неподвижной части кости таза (15) с установленным на ней референтным позиционером с пассивными маркерами (12) и подвижной части кости таза (16) с установленным на ней третьим позиционером с пассивными маркерами (13), а также области перелома (17), результаты обработки по вычислительной сети передают в компьютер (2) оптической медицинской навигационной системы (1) и отображают на экране-мониторе (3) хирургу для планирования и последующего управления хирургическими инструментами в ходе операции, на экране монитора (3) на 3D сегментированном изображении неподвижной части кости таза (15) и подвижной части кости таза (16) хирургом в области перелома (17) указываются точки соответствия, которые при совмещении подвижной части кости таза (16) и неподвижной части кости таза (15) во время операции необходимо максимально сблизить, во время операции с использованием оптической медицинской навигационной системы (1) производят геометрическую привязку референтного позиционера с пассивными маркерами (12) и третьего позиционера с пассивными маркерами (13) установленных на пациенте и видимых стереовидеокамерами (4) оптической медицинской навигационной системы (1) к сегментированным 3D изображениям референтного позиционера с пассивными маркерами (12) и третьего позиционера с пассивными маркерами (13) и соответствующим им сегментированным неподвижной части кости таза (15) и подвижной части кости таза (16), во время операции «ручными» действиями хирург сближает подвижную часть кости таза (16) с неподвижной частью кости таза (15) и устанавливает их в положение для последующей фиксации винтом (14), при этом на монитор (3) в реальном масштабе времени выводится 3D сегментированное изображение неподвижной части кости таза (15) и подвижной части кости таза (16) и информация о расстояниях между точками соответствия в области перелома (17), которые необходимо максимально сблизить для обеспечения совмещения неподвижной части кости таза (15) и подвижной части кости таза (16), далее хирург устанавливает второй позиционер с пассивными маркерами (10) на дрель (11), для прохождения спицы (7) через желаемые области в неподвижной части кости таза (15) и подвижной части кости таза (16) хирург задает направление засверливания спицы (7) по схематическому изображению пассивных маркеров первого позиционера с пассивными маркерами (9), расположенных на направляющей спицы (8), и глубину засверливания спицы (7) по схематическому изображению пассивных маркеров второго позиционера с пассивными маркерами (10) относительно 3D изображения неподвижной части кости таз (15) и подвижной части кости таза (16), отображаемых на экране монитора (3) оптической медицинской навигационной системой (1), далее хирург засверливает дрелью (11) спицу (7) в неподвижную часть кости таза (15) и подвижную часть кости таза (16), затем удаляет направляющую спицы (8), по спице (7) устанавливает скрепляющий подвижную часть кости таза (16) и неподвижную часть кости таза (15) винт (14), удаляет спицу (7) и проводит зашивание раны.

2. Способ по п. 1, отличающийся тем, что во время операции получают количественную оценку, характеризующую точность совмещения неподвижной части кости таза (15) и подвижной части кости таза (16).



 

Похожие патенты:

Изобретение относится к ортопедии и может быть применимо для лечения врожденной варусной деформации шейки бедренной кости тяжелой степени. Низводят бедренную кость с помощью дистракционного чрескостного аппарата внешней фиксации.

Группа изобретений относится к нейрохирургии и может быть применима для стабилизации позвоночника, профилактики и лечения отека спинного мозга. В межпозвоночный промежуток устанавливают устройство микрорадиатор, выполненное в виде спирали, жестко соединенной с вентральной пластиной, которую фиксируют к смежным позвонкам так, чтобы спираль контактировала с твердой мозговой оболочкой.

Изобретение может быть применимо для доступа к тазобедренному суставу. Рассекают кожу, подкожно-жировую клетчатку.

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано при планировании реконструкции заднего отдела стопы. На рентгенограмме стопы, выполненной в боковой проекции, ставят точку «а», соответствующую заднему краю суставной поверхности блока таранной кости, и точку «b», соответствующую переднему краю.

Изобретение относится к травматологии, ортопедии, нейрохирургии и может быть применимо для хирургического лечения лопающихся переломов атланта. Производят минидоступ к поперечным отросткам атланта трансмускулярно через грудино-ключично-сосцевидную мышцу под сосцевидными отростками с двух сторон на протяжении 2,5-3,5 см.

Изобретение относится к травматологии и ортопедии и может быть применимо для оперативного лечения разрыва сухожилия большой грудной мышцы. Прошивают сухожилие перекрещивающимися лавсановыми нитями, которые протягивают через два поперечных канала, сформированные в головке плечевой кости во фронтальной плоскости, и связывают на ее задней поверхности.

Изобретение относится к медицине, а именно к ортопедии и травматологии при гнойно-некротических поражениях стопы. Способ включает вскрытие гнойного очага и его активное дренирование, при котором рассекают кожу, подкожную клетчатку, поверхностную и собственную фасции и производят иссечение пораженных, гнойно-расплавленных тканей.
Изобретение относится к травматологии и ортопедии и может быть применимо для анатомической однопучковой пластики передней крестообразной связки трансплантатом из связки надколенника.

Изобретение относится к ортопедической хирургии и может быть применимо для ушивания раны после операции на тазобедренном суставе. Широкую фасцию бедра рассекают сначала продольно, а затем поперечно вниз.
Изобретение относится к травматологии и ортопедии и может быть применимо для ревизионного протезирования тазобедренного сустава. На основе объемных параметров дефекта вертлужной впадины создают компьютерную модель спейсера, одна сторона которой совпадает с рельефом дна вертлужной впадины, а вторая выполнена в виде полусферы.

Изобретение относится к травматологии и ортопедии и может быть применимо для оперативного лечения вывиха акромиального конца ключицы. При помощи сверла диаметром 4,3 мм формируют канал в основании клювовидного отростка между местами прикрепления конической и трапециевидной связок. Моделируют две «блок-системы», каждая из которых включает полиэстеровую, нерассасывающуюся, плетёную нить диаметром 1 мм и две опорные площадки в виде титановой пуговицы с четырьмя отверстиями размерами 4х12 мм каждая, для чего связывают опорные площадки «блок-системы», проводя нить через их центральные отверстия в два оборота и оставляя концы нити с одной стороны. Опорную площадку каждой «блок-системы» вводят в сформированный ранее канал. Сверлом диаметром 4,3 мм формируют два сквозных канала в ключице в местах прикрепления к ней конической и трапециевидной связок. Проводят оставшиеся опорные площадки каждой «блок-системы» через сформированные каналы ключицы снизу вверх, для чего при помощи иглы Дешана проводят петлю через каналы в ключице, оставляя её концы вне раны, с петлёй связывают нить, предварительно проведённую через незадействованное отверстие опорной площадки, потянув за концы нити петли выводят оставшиеся опорные площадки через каналы ключицы, проводя по одной опорной площадке в каждый канал. Попеременным натяжением концов нитей «блок-систем» опорные площадки стягивают между собой, обеспечивая устранение вывиха и фиксацию вправленного акромиального конца ключицы. Концы нитей связывают между собой 3-мя узлами. Способ позволяет достичь как вертикальной, так и горизонтальной стабильности в ключично-акромиальном сочленении, уменьшить риск рецидива. 2 ил.

Изобретение относится к медицине, а именно ортопедии, и может быть применимо для двухэтапного эндопротезирования тазобедренного сустава при врожденном вывихе бедра. Во время выполнения первого хирургического вмешательства осуществляют остеотомию шейки с удалением головки. Производят установку тела модульной ножки эндопротеза тазобедренного сустава, выполняют тракцию бедренной кости в направлении истинной вертлужной впадины до натяжения мышц и фиксируют бедренную кость в достигнутом положении. Над крылом подвздошной кости производят разрез мягких тканей, накладывают опорную пластину на гребень подвздошной кости. В мышцах формируют тоннель по направлению к опилу бедренной кости. Через сформированный тоннель устанавливают дистракционное устройство, состоящее из шарнирно соединенных крепежного узла, имеющего сквозные отверстия под блокировочные винты и прямоугольнообразный выступ, и цилиндрообразного тела, включающего стержневой элемент с резьбовым участком на свободном конце, выдвигающийся за пределы его торцевой поверхности со стороны проксимального конца под воздействием жидкости, нагнетаемой во внутреннюю полость цилиндрообразного тела через подключенный к нему гидравлический насос. Резьбовой участок стержневого элемента соединяют с опорной пластиной, установленной на гребне подвздошной кости, а выступ крепежного узла вводят в паз в теле монолитной ножки эндопротеза, дополнительно фиксируя положение устройства посредством блокировочных винтов, установленных через сквозные отверстия в опил бедренной кости. Гибкую трубку, соединяющую цилиндрообразное тело с гидравлическим насосом, выводят наружу через дополнительный прокол вне операционной раны. В послеоперационном периоде выполняют дискретно во времени низведение бедра с помощью установленного устройства, увеличивая его протяженность на 1-2 мм в сутки. По достижении низведения проксимальной части бедра уровня истинной вертлужной впадины осуществляют второе хирургическое вмешательство, во время которого удаляют дистракционное устройство и устанавливают вертлужный компонент эндопротеза тазобедренного сустава с головкой и шейкой, собирая конструкцию воедино. Изобретение позволяет обеспечить полноценное низведение вывиха бедра при минимальной потере костной массы и повышении качества жизни больного в период лечения. 1 пр., 1 ил.

Изобретение относится к медицине, а именно к травматологии, и может быть применимо для замещения дефектов хрящевой ткани. Имплантируют измельченный аутологичный хрящ, взятый с хрящевой части ребра, смешанного с фибриновым клеем, в область дефекта, пропорции смеси для замещения дефекта составляют 20-40% объема фибринового клея и 60-80% объема хрящевой крошки. Способ позволяет обеспечить высокий регенераторный потенциал имплантата, обеспечить замещение дефектов различных размеров. 2 ил., 1 пр.

Изобретение относится к медицине, а именно к ортопедии и травматологии, и может быть применимо для пластики дефекта передне- и задне-верхнего края вертлужной впадины структурной аутокостью при эндопротезировании тазобедренного сустава. В истинной вертлужной впадине фрезами формируют костное ложе. Оценивают площадь «недопокрытия» тазового компонента эндопротеза в области дефекта вертлужной впадины. Производят остеоперфорацию спицами поверхности дефекта вертлужной впадины и обработку ее костными ложками. Изготавливают аутотрансплантат, для этого отделяют головку бедренной кости, разрезая электропилой поперек шейку бедренной кости, со стороны опила шейки разрезают поперек головку бедренной кости на две части, выбирают наиболее сохранную часть, обрабатывают ее костными кусачками, доводя геометрическую форму этой части до конгруэнтности с поверхностью дефекта вертлужной впадины, при этом сохраняют кортикальный слой головки. Аутотрансплантат ориентируют кортикальным слоем кнаружи, так чтобы часть аутотрансплантата свисала в область вертлужной впадины, и предварительно фиксируют спицами в область дефекта. Проверяют положение аутотрансплантата, при необходимости корректируют. Фиксируют аутотрансплантат компрессирующими винтами. Нависающую часть аутотрансплантата обрабатывают сферическими фрезами. Форму костного ложа контролируют, помещая в него тестовую чашку. Устанавливают бесцементный тазовый компонент. Заклинивают тазовый компонент за счет плотной посадки с соблюдением углов наклона и антеторсии. Спицы удаляют. Устанавливают бедренный компонент эндопротеза. Головку бедренного компонента вправляют в тазовый компонент. Способ обеспечивает стабильность тазового компонента эндопротеза. 2 ил.

Изобретение относится к травматологии и ортопедии и может быть применимо для реконструкции таза при сложных посттравматических деформациях. Накладывают аппарат внешней фиксации на крылья подвздошной кости и бедренную кость функционально укороченной конечности. На вышестоящей тазовой кости фиксируют тазобедренный сустав и подвздошную кость в надацетабулярной области. Осуществляют доступ к подвздошной кости. Выполняют поперечную остеотомию тела подвздошной кости проксимальнее надацетабулярной области. Осуществляют доступ к лонной и седалищной костям нижестоящей тазовой кости. Производят остеотомию лонной и седалищной кости через зону неправильно сросшихся отломков. Используя аппарат внешней фиксации, производят одномоментное устранение деформации таза, формируют диастаз в теле подвздошной кости. Наполняют остеопластическим материалом сетчатый имплантат, выполненный в форме полого цилиндра с сетчатыми стенками и зубчатыми краями. Устанавливают сетчатый имплантат в диастаз подвздошной кости. Вводят костные винты, выполненные с головкой камертонного типа. Первый костный винт устанавливают под передне-верхней остью остеотомированной подвздошной кости, второй костный винт устанавливают в передне-нижнюю ость остеотомированной подвздошной кости, первый и второй костные винты соединяют между собой гладким стержнем. Третий и четвертый костные винты вводят в лонные кости по обе стороны от симфиза, вводят пятый костный винт под передне-верхнюю ость подвздошной кости нижестоящей тазовой кости, третий, четвертый и пятый костные винты соединяют смоделированным конгруэнтно поверхности костей гладким стержнем. Проверяют стабильность конструкции. Демонтируют аппарат внешней фиксации. Способ позволяет одномоментно устранить деформацию, уменьшить риск воспалительных осложнений, улучшить качество жизни пациента в послеоперационном периоде. 3 ил.

Изобретение относится к травматологии и ортопедии и может быть применимо для лечения дефекта головки бедра. Производят остеотомию верхушки большого вертела. Выполняют хирургический вывих головки бедренной кости из вертлужной впадины. По передненаружной поверхности рассекают хрящевой покров головки. Рассекают надкостницу вдоль оси шейки. Отслаивают надкостнично-хрящевой лоскут. Выполняют продольную остеотомию латеральной части головки и шейки и поперечную остеотомию латеральной части основания шейки. Удаляют полученный костный фрагмент. Придают сферичную форму латеральному краю головки. Раневую поверхность головки и шейки укрывают надкостнично-хрящевым лоскутом. Фиксируют надкостнично-хрящевой лоскут швами и винтами к головке. Вправляют головку в вертлужную впадину. Осуществляют транспозицию большого вертела. Фиксируют винтами достигнутое положение большого вертела. Устанавливают аппарат внешней фиксации на тазовую и бедренную кости. Стабилизируют достигнутое положение и разгружают тазобедренный сустав. В послеоперационном периоде производят разработку пассивных движений в тазобедренном суставе. Способ позволяет улучшить пространственные взаимоотношения в тазобедренном сочленении, обеспечить возможность разгрузки и разработки сустава в послеоперационном периоде. 9 ил.

Изобретение относится к медицине, а именно к травматологии и ортопедии, и предназначено для использования при оперативном лечении пациентов с аваскулярным некрозом таранной кости. После осуществления хирургического медиального линейного доступа к дистальному отделу большеберцовой кости выделяют медиальную лодыжку, оставляя интактным место прикрепления дельтовидной связки. Через верхушку медиальной лодыжки под рентгеновским контролем вводят две спицы под углом 45° к оси большеберцовой кости и параллельно друг другу, по направляющим спицам вводят два канюлированных маллеолярных винта, формируя посредством их введения каналы для последующей фиксации медиальной лодыжки. Под рентгеновским контролем в дистальный метаэпифиз большеберцовой кости в проекции верхушки внутренней лодыжки на 2 см выше суставной щели голеностопного сустава проводят осевую спицу во фронтальной плоскости, ориентируя ее на линию перехода суставной поверхности большеберцовой кости в суставную поверхность медиальной лодыжки. Далее, используя осевую спицу как нулевую точку, медиальную лодыжку голени осцилляторной пилой остеотомируют в дистальном направлении в виде шеврона с величиной угла между плечами остеотомии 60°, в результате чего остаются интактными передний и задний отделы большеберцовой кости, а также место прикрепления дельтовидной связки. Остеотомированный фрагмент медиальной лодыжки смещают медиально и книзу и выполняют его провизорную фиксацию спицами Киршнера или наводящими швами. После выполнения основного этапа операции остеотомированный фрагмент медиальной лодыжки укладывают на материнское ложе и фиксируют двумя маллеолярными канюлированными винтами, вводя их в подготовленные ранее каналы. Способ позволяет достигнуть хорошую визуализацию суставной поверхности таранной кости для выполнении мозаичной остеохондропластики костно-хрящевых дефектов, при этом, за счет большей площади шевронной остеотомии, обеспечивается стабильность проведенного остеосинтеза остеотомированного фрагмента медиальной лодыжки, а также, за счет сохранения дельтовидной связки, обеспечивается профилактика фронтальной нестабильности голеностопного сустава. 7 ил., 1 пр.

Изобретение относится к травматологии и ортопедии и может быть применимо для хирургического доступа к тазобедренному суставу при эндопротезировании. В направлении сверху вниз над большим вертелом проводят центральную линию. На этой центральной линии отмечают точки проксимальной и дистальной границы большого вертела. Измеряют расстояние между этими точками и делят на 3 равные части, выделяя проксимальную, среднюю и дистальную. Выполняют первый разрез от проксимальной точки по ходу мышечных волокон средней ягодичной мышцы в передне-верхнем направлении длиной 3 см. Выполняют второй разрез от точки на границе между средней и дистальной третью большого вертела в направлении кпереди, отступив от центральной линии 1 см, длиной 3 см. Третий разрез производят, соединяя начальные точки первого и второго разрезов между собой, в виде дуги, направленной выпуклой стороной кпереди. Отсекают среднюю ягодичную мышцу от передней поверхности большого вертела в пределах выполненных разрезов. Полученный лоскут средней ягодичной мышцы смещают кпереди и фиксируют при помощи инструментов. Изобретение позволяет уменьшить травматичность, сократить срок реабилитации за счёт более быстрого восстановления мышечного окружения и функции тазобедренного сустава. 5 ил.

Изобретение относится к травматологии и ортопедии и может быть применимо для лечения ложного сустава плечевой кости. От лучевого нерва и окружающих тканей мобилизуют глубокую артерию плеча и коллатеральную лучевую артерию с комитантными венами от выхода из спирального канала до уровня дистального метадиафиза плечевой кости. В едином комплексе с выделенными сосудами, их ветвями и ветвями возвратной лучевой артерии к надкостнице наружного надмыщелка плечевой кости поднимают надкостнично-кортикальный аутотрансплантат, надкостницу поднимают в виде лоскутов от передней и задней поверхностей наружного надмыщелка на уровне прикрепления длинного лучевого разгибателя кисти, включая его фрагмент. Лоскуты надкостницы отворачивают латерально. Перфорируют кортикальную пластинку по периметру забираемого аутотрансплантата и поднимают. Комплекс тканей ротируют в область ложного сустава. Кортикальную часть аутотрансплантата укладывают в ложе, сформированное в области ложного сустава на глубину толщины кортикальной пластинки аутотрансплантата. Надкостничные лоскуты разводят в стороны по поверхности костных фрагментов плечевой кости и фиксируют. Способ позволяет обеспечить выживаемость трансплантата, сократить срок лечения. 6 ил.

Изобретение относится к медицине. Аппарат внешней фиксации брюшной стенки для лечения компартмент-синдрома при третичном перитоните состоит из спиц Киршнера, двух опор, расположенных в параллельных плоскостях, соединенных тремя резьбовыми штангами, компрессирующего устройства в виде резьбового стержня, на одном конце которого установлена посредством гаек планка, плоскость широкой стороны которой перпендикулярна резьбовому стержню. Каждая опора выполнена в виде трех балок с продольно расположенными отверстиями, соединенных в виде скобы болтами и гайками. Концы спиц Киршнера крепятся к свободным концам скобы через кронштейны с резьбовым хвостовиком болтом-спицефиксатором. Резьбовые штанги устанавливаются параллельно в средней части соответствующих балок. Второй конец резьбового стержня крепится к средней резьбовой штанге посредством кронштейнов и гаек. Изобретение позволяет эффективно купировать абдоминальный компартмент-синдром, является универсальным и может быть использован в едином блоке с аппаратами внешней фиксации при «реберном клапане», переломах костей таза и проксимальных переломах бедра в сочетании с травмой живота. 1 ил.

Изобретение относится к травматологии и ортопедии и может быть применимо для использования оптической медицинской навигационной системы для визуализации и количественной оценки качества репозиции отломков при переломе кости таза. На подвижной части кости таза устанавливают третий позиционер с пассивными маркерами. На рентгеновском компьютерном томографе проводят регистрацию изображений неподвижной части кости таза с установленным на ней референтным позиционером с пассивными маркерами и подвижной части кости таза с установленным на ней третьим позиционером с пассивными маркерами. На рабочей станции рентгеновского компьютерного томографа проводят обработку изображений и строят 3D сегментированное изображение неподвижной части кости таза с установленным на ней референтным позиционером с пассивными маркерами и подвижной части кости таза с установленным на ней третьим позиционером с пассивными маркерами, а также области перелома. Результаты обработки по вычислительной сети передают в компьютер оптической медицинской навигационной системы и отображают на экране монитора хирургу для планирования и последующего управления хирургическими инструментами в ходе операции. На экране монитора на 3D сегментированном изображении неподвижной части кости таза и подвижной части кости таза хирургом в области перелома указываются точки соответствия, которые при совмещении подвижной части кости таза и неподвижной части кости таза во время операции необходимо максимально сблизить. Во время операции с использованием оптической медицинской навигационной системы производят геометрическую привязку референтного позиционера с пассивными маркерами и третьего позиционера с пассивными маркерами, установленных на пациенте и видимых стереовидеокамерами оптической медицинской навигационной системы к сегментированным 3D изображениям референтного позиционера с пассивными маркерами и третьего позиционера с пассивными маркерами и соответствующим им сегментированным неподвижной части кости таза и подвижной части кости таза. Во время операции «ручными» действиями сближают подвижную часть кости таза с неподвижной частью кости таза и устанавливают их в положение для последующей фиксации винтом. На монитор в реальном масштабе времени выводят 3D сегментированное изображение неподвижной части кости таза и подвижной части кости таза и информацию о расстояниях между точками соответствия в области перелома, которые необходимо максимально сблизить для обеспечения совмещения неподвижной части кости таза и подвижной части кости таза. Устанавливают второй позиционер с пассивными маркерами на дрель. Для прохождения спицы через желаемые области в неподвижной части кости таза и подвижной части кости таза задают направление засверливания спицы по схематическому изображению пассивных маркеров первого позиционера с пассивными маркерами, расположенных на направляющей спицы, и глубину засверливания спицы по схематическому изображению пассивных маркеров второго позиционера с пассивными маркерами относительно 3D изображения неподвижной части кости таз и подвижной части кости таза, отображаемых на экране монитора оптической медицинской навигационной системой. Далее засверливают дрелью спицу в неподвижную часть кости таза и подвижную часть кости таза. Удаляют направляющую спицу. По спице устанавливают скрепляющий подвижную часть кости таза и неподвижную часть кости таза винт. Удаляют спицу и проводит зашивание раны. Изобретение позволяет уменьшить лучевую нагрузку на пациента, увеличить функциональные возможности способа. 1 з.п. ф-лы, 3 ил.

Наверх