Поглотитель и способ удаления диоксида углерода из газонаркозных смесей


 

B01D53/00 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2583818:

Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (RU)

Изобретение относится к медицине, а именно к очистке газонаркозных смесей от диоксида углерода в анестезиологии. Описан регенерируемый поглотитель и способ удаления диоксида углерода из газонаркозных смесей в реверсивном дыхательном контуре этим поглотителем при температуре 20-40°С, с последующей регенерацией поглотителя продувкой горячим воздухом с температурой 150-300°С. Технический результат - использование 1 загрузки поглотителя в течение нескольких тысяч циклов наркоз/регенерация (большой ресурс работы), устранение необходимости перезарядки картриджей поглотителя, стерильность поглотителя, экологичность обслуживания наркозного аппарата. 2 н. и 4 з.п. ф-лы, 3 пр., 1 ил.

 

Изобретение относится к медицине, а именно к очистке газонаркозных смесей от диоксида углерода, и может найти широкое применение в анестезиологии.

Стремление уменьшить потери газов, наркотических веществ при проведении общей анестезии привело к созданию дыхательных контуров, в которых выдыхаемая больным газонаркозная смесь полностью (закрытая, замкнутая система) или частично (полузакрытая, полузамкнутая система) вновь вдыхается больным. При использовании этих систем возникает необходимость удаления высоких концентраций углекислого газа, попадающих в смесь за счет дыхания пациента. Углекислый газ удаляют с помощью адсорберов, содержащих нерегенерируемые химические поглотители углекислоты. Когда выдыхаемая газонаркозная смесь попадает в адсорбер, она очищается от избытка углекислого газа. В качестве нерегенерируемых химических поглотителей CO2 в основном используют натронную известь с различным содержанием гидроксидов калия и натрия. В современной анестезиологической практике наиболее часто применяют нерегенерируемые поглотители следующих марок: ХПИ, Sodasorb, Draeger Sorb, Carbolime и т.д.

Основным недостатком использования нерегенерируемых поглотителей является необходимость регулярной замены отработанного поглотителя свежим. При этом возникают дополнительные трудности, связанные с организацией хранения поглотителей (потеря активности за счет взаимодействия с атмосферным CO2), а также с их утилизацией, поскольку содержимое картриджей опасно для окружающей среды (едкие щелочи).

Существующие методы обратимого удаления CO2 из газовоздушных смесей оказываются непригодными для очистки влажных газонаркозных смесей, поскольку традиционные типы поглотителей (цеолиты, активированные угли) имеют, как правило, значительно большее сродство к воде, нежели к CO2, поэтому резко снижают свою емкость во влажной атмосфере.

Для уменьшения влажности очищаемой газовой смеси и повышения емкости цеолитов по диоксиду углерода в ряде патентов предложено использовать блок предварительной осушки, устанавливаемый перед адсорбером с цеолитом (US 6309445, B01D 53/02, 30.10.2001; US 6106593, B01D 53/04, 22.08.2000). Однако такой метод решения проблемы ведет к существенному усложнению технологической схемы процесса. Аналогичная система разработана и для процесса короткоцикловой безнагревной адсорбции (US 5656064, B01D 53/02, 12.08.1997). Следует отметить также, что многостадийность процесса делает его неприменимым в условиях функционирующего наркозного аппарата.

В патенте (ЕР 1084743, B01D 53/02, 21.03.200)1 для удаления CO2 из газовых смесей предлагают использовать оксид алюминия, допированный небольшими добавками щелочных металлов (до 7,25 мас.% K2O и/или Na2O). Достоинством данного метода удаления CO2 является то, что активное вещество находится в порах матрицы и не вызывает коррозии оборудования, а сам поглотитель может выпускаться в виде гранул любого размера и формы или блоков. В то же время небольшое содержание оксидов щелочных металлов не обеспечивает высокой емкости поглотителя.

В патенте (US 3865924, B01D 53/02, 11.02.1975) описан регенерируемый поглотитель CO2, представляющий собой механическую смесь порошков оксида алюминия и карбоната калия. Такой поглотитель предлагают применять для удаления диоксида углерода в системах жизнеобеспечения, например, подводных лодок. Поглощение CO2 осуществляется по реакции:

K2CO3+H2O+CO2=2KHCO3

Наиболее близким к предложенному нами способу удаления диоксида углерода из газонаркозных смесей является способ удаления CO2 пористыми материалами (активированный уголь, оксид алюминия, цеолит, кизельгур или их смесь), на которые нанесен гидрат карбоната калия и/или натрия (JP 08040715, A2, 13.02.1996). Регенерацию сорбента производят паром. Активным компонентом поглотителя, обеспечивающим его высокую емкость, является диспергированный в порах матрицы карбонат щелочного металла. В то же время это соединение, способное вступать в необратимые химические взаимодействия с некоторыми носителями. Это приводит к уменьшению сорбционной емкости поглотителя в многоцикловом режиме эксплуатации.

Авторы патента (РФ №2244586, B01D 53/02, 20.01.2005) показали, что предпочтительным носителем для карбоната калия является оксид алюминия. Поглотитель с матрицей из оксида алюминия обладал наиболее высокой скоростью сорбции CO2. Следует отметить, что в процессе использования указанного поглотителя происходит уменьшение количества сорбируемого диоксида углерода от цикла к циклу из-за образования смешанной неактивной фазы состава KAl(ОН)2CO3. Для регенерации этой фазы требуются высокие температуры - 300, 350°С, что ведет к удорожанию используемых материалов и повышает энергозатраты. В патенте (РФ №2493906, B01J 20/30, 27.09.13) в качестве носителя предложен оксид иттрия, однако данный материал обладает высокой стоимостью.

Настоящее изобретение решает задачу очистки газонаркозных смесей от диоксида углерода с использованием многоразового сорбента.

Задача решается способом очистки газонаркозных смесей от диоксида углерода в аппаратах с реверсивным контуром, в котором для удаления CO2 используют термически регенерируемый поглотитель, очистку осуществляют периодически с процессом регенерации сорбента, а также составом используемого поглотителя, представляющим собой карбонат калия, закрепленный в порах волластонита.

Термически регенерируемый поглотитель диоксида углерода имеет состав K2CO3 - 1-50 мас.%., CaSiO3 (волластонит) - остальное. Использоваие волластонита в качестве носителя для карбоната калия позволяет поддерживать высокую скорость сорбции диоксида углерода. Щелочная природа волластонита препятствует образованию неактивной фазы носителя и активного компонента, в результате чего динамическая емкость поглотителя постоянна на протяжении сотен циклов очистки/регенерации. Кроме того, волластонит является относительно дешевым материалом, что увеличивает экономическую целесообразность процесса. Низкая химическая активность карбоната калия по сравнению с компонентами натронной извести делает сорбент инертным по отношению к наркотизирующим компонентам газонаркозной смеси (N2O, галогеналканы и др.). Таким образом, данный поглотитель может быть использован в качестве регенерируемого сорбента в наркозных аппаратах с закрытым или полузакрытым контуром.

Очистку газонаркозной смеси осуществляют при температуре 20-40°С.

Регенерацию сорбента проводят продувкой горячим воздухом с температурой 150-300°С.

Описан регенерируемый поглотитель и способ удаления диоксида углерода из газонаркозных смесей в реверсивном дыхательном контуре этим поглотителем при температуре 20-40°С, с последующей регенерацией поглотителя CO2 продувкой горячим воздухом с температурой 150-300°С.

Технический результат - использование 1 загрузки сорбента в течение нескольких тысяч циклов наркоз/регенерация (большой ресурс работы), устранение необходимости перезарядки картриджей поглотителя, стерильность поглотителя и сорбционного блока, экологичность обслуживания наркозного аппарата.

Таким образом, предложен поглотитель и способ очистки газонаркотических смесей от диоксида углерода, в котором очистка наркозно-дыхателыной смеси осуществляется периодически с процессом регенерации сорбента, что позволяет использовать 1 загрузку поглотителя для проведения нескольких сотен операций с применением наркозного аппарата с реверсивным контуром.

При этом цикл работы адсорбера наркозного аппарата разбивается на две стадии:

1. Очистка воздушно-наркозной смеси от избытка диоксида углерода на выдохе в течение операции (температура адсорбера 20-40°С).

2. Термическая регенерация поглотителя после окончания операции, при этом адсорбер продувается воздухом, а десорбированный CO2 сбрасывается в атмосферу, одновременно достигается обеззараживание поглотителя.

Замена регенерируемого поглотителя производится не каждый раз после проведения наркоза, а после нескольких сотен циклов сорбции/регенерации.

Сущность изобретения иллюстрируется следующими примерами и илл.

Пример 1 (Сравнительный).

В проточный адсорбер-картридж засыпают 1 кг известкового нерегенерируемого поглотителя состава Ca(ОН)2 - 80 мас.%, NaOH - 4 мас.%, H2O - 16 мас.% (марки Sodasorb). В течение 2 ч через адсорбер продувают смесь насыщенного при 25°С парами воды воздуха с 5 об. % CO2, с объемной скоростью подачи 10 л/мин. Концентрация диоксида углерода на выходе из адсорбера не превышает 0,06 об. % CO2. После проведения испытания проводят перезарядку адсорбера новой порцией свежего нерегенерируемого поглотителя CO2, отработанный поглотитель утилизируют.

Пример 2.

Гранулированный волластонит CaSiO3 пропитывают по влагоемкости 40% раствором K2CO3 и высушивают в сушильном шкафу при температуре 200°С в течение 2 ч. Содержание K2CO3 в приготовленном регенерируемом сорбенте составляет ≈27 мас.%.

4 кг полученного регенерируемого сорбента загружают в проточный адсорбер.

Аналогично примеру 1 в течение 2 ч через адсорбер продувают смесь насыщенного при 25°С парами воды воздуха с 5 об. % CO2, с объемной скоростью подачи 10 л/мин. Концентрация диоксида углерода на выходе из адсорбера не превышает 0,08 об. %. Затем проводят регенерацию поглотителя непосредственно в адсорбере. Для этого нагревают адсорбер до 200°С и продувают через него воздух в течение 30 мин (при этом достигается обеззараживание поглотителя). Повторяют циклы «очистка/регенерация» 20-30 раз. В течение последующих циклов уровень концентрации CO2 на выходе из адсорбера на стадии очистки не превышает 0,08 об. %.

Пример 3.

3,6 кг регенерируемого поглотителя, полученного аналогично примеру 2, отличающегося составом (35 мас.% K2CO3), загружают в проточный адсорбер, на вход которого подают воздух, насыщенный парами воды при 30°С, с 4 об. % CO2 с объемной скоростью подачи 15 л/мин в течение 2 ч.

Концентрация диоксида углерода на выходе из адсорбера не превышает 0,08 об. % CO2. После 2 ч очистки продувку прекращают, поглотитель высыпают из адсорбера и регенерируют в течение 30 мин при температуре 300°С в сушильном шкафу. Далее регенерированный поглотитель снова засыпают в адсорбер для проведения дальнейшей очистки смеси. Повторяют описанный эксперимент 20-30 раз. В течение последующих циклов «очистка/регенерация» уровень концентрации CO2 на выходе из адсорбера не превышает 0,08 об. %.

Пример 4.

100 г регенерируемого сорбента, полученного аналогично примеру 2, отличающегося составом (21 мас.% K2CO3), загружают в проточный адсорбер, на вход которого подают смесь насыщенного при 25°С парами воды воздуха с 5 об. % CO2, объемная скорость подачи 150 нсм3/мин. В момент достижения концентрации CO2 0,08 об. % продувку газонаркотической смеси прекращают, затем сорбент регенерируют прокаливанием при 300°С в токе воздуха.

Количество десорбированного диоксида углерода CO2 определяют с помощью капнографа на выходе из адсорбера.

Динамическую емкость определяют как отношение массы десорбированного CO2 к массе сорбента. Проводят 27 адсорбционно-десорбционных циклов. Средняя емкость сорбента составляет около 40 мг/г. Изменение динамической емкости в ходе испытаний показано на Фиг.

1. Поглотитель диоксида углерода для очистки газонаркозных смесей, содержащий активный компонент - карбонат калия, нанесенный на носитель, отличающийся тем, что в качестве носителя он содержит пористую матрицу из волластонита CaSiO3.

2. Поглотитель диоксида углерода по п. 1, отличающийся тем, что он имеет следующий состав: К2СО3 1-50 мас. %, волластонит CaSiO3 - остальное.

3. Способ очистки газонаркозных смесей от диоксида углерода в наркозных аппаратах с реверсивным контуром, отличающийся тем, что для удаления диоксида углерода CO2 используют термически регенерируемый поглотитель диоксида углерода, представляющий собой карбонат калия, закрепленный в порах носителя - волластонита CaSiO3, очистку осуществляют периодически с процессом регенерации поглотителя.

4. Способ по п. 2, отличающийся тем, что термически регенерируемый поглотитель диоксида углерода имеет состав: К2СО3 1-50 мас. %, волластонит CaSiO3 - остальное.

5. Способ по п. 2, отличающийся тем, что очистку осуществляют при температуре 20-40°C.

6. Способ по п. 2, отличающийся тем, что регенерацию поглотителя проводят продувкой горячим воздухом с температурой 150-300°C.



 

Похожие патенты:

Группа изобретений относится к способу работы двигателя внутреннего сгорания с искровым зажиганием. Способ имеет один цилиндр и один выхлопной трубопровод для вывода выхлопных газов из одного цилиндра.

Изобретение относится к оборудованию для химических и гидрометаллургических производств. Комбинированный выпарной аппарат, включающий вертикально установленные в нем теплообменные трубы с падающей и с поднимающейся пленкой, приемно-распределительную, растворную и выводную камеры, верхнюю и нижнюю трубные решетки, насос, отличается тем, что между верхней и нижней трубными решетками размещена промежуточная трубная решетка, образующая с нижней трубной решеткой приемно-распределительную камеру, снабженную патрубком для ввода циркулирующего раствора и соединенным с насосом, растворная камера расположена над верхней трубной решеткой и снабжена патрубком для вывода пара, теплообменные трубы с падающей пленкой выпариваемого раствора закреплены в верхней, промежуточной и нижней трубных решетках, теплообменные трубы с поднимающейся пленкой раствора закреплены в верхней и промежуточной трубных решетках, а их верхние концы выступают над верхней трубной решеткой, при этом трубы расположены на равном расстоянии друг от друга.

Изобретение откосится к оборудованию для проведения адсорбционных процессов в системе газ (пар) - адсорбент. Технический результат - повышение степени очистки газового потока от целевого компонента и пыли за счет увеличения площади контакта адсорбента с целевым компонентом.

Изобретение относится к тепломассообменным аппаратам. Вихревой испаритель-конденсатор, состоящий из вертикального цилиндрического корпуса с крышкой и днищем, технологическими штуцерами, камерами для ввода и вывода теплоносителей, цилиндрических труб, снабженных распределителями жидкости и внутренними трубами, на поверхности которых выполнены сквозные каналы, к боковым кромкам которых плотно присоединены профилированные пластины, установленные в направляющих шайбах, образующие завихрители для обеспечения вращательно поступательного движения пара (газа), размещенные по высоте цилиндрических труб, отличающийся тем, что под каждым завихрителем установлены опорные шайбы, снабженные каналами для стекания теплоносителя, отношение внутреннего диаметра опорной шайбы d к внутреннему диаметру цилиндрической трубы D равно d/D=0,6-0,9, а в направляющих шайбах выполнены сквозные профилированные отверстия для перемещения пара (газа) в осевом направлении, причем отношение расстояния между двумя соседними опорными шайбами L к высоте столба вращающегося газо-жидкостного слоя H выполняется равным L/H≤1, где величина Η равна H - высота газожидкостного слоя, м, h - высота каналов в завихрителе, м, φ - газосодержание (доля газа в жидкости), Dст - диаметр цилиндрической трубы, м, Rзав - радиус завихрителя, м, uг - скорость газа в каналах завихрителя, м/с, m - масса вращающейся воды (жидкости), кг. Технический результат заключается в увеличении производительности.

Изобретение относится к способу регенерации кинетического ингибитора гидратообразования, используемого как единственный тип ингибитора гидратообразования в системе регенерации ингибитора гидратообразования.

Изобретение относится к газовой промышленности и может быть использовано для транспортировки газов по трубопроводам. Скважинную продукцию газоконденсатного месторождения (I) сепарируют (1) с получением газа входной сепарации (II), водного конденсата (III) и углеводородного конденсата (IV), который дросселируют и сепарируют с получением газа стабилизации (V) и стабилизированного углеводородного конденсата (VI), который фракционируют совместно с широкой фракцией легких углеводородов (VII) с получением дистиллята среднего (VIII) и широкого (IX) фракционного состава.

Изобретение относится к области атомной энергетики и предназначено для использования в паротурбинных установках АЭС с системой сжигания водорода с кислородом с содержанием недоокисленного водорода в основном потоке рабочего тела под давлением после системы сжигания перед поступлением в турбину.

Изобретение относится к способам подготовки попутного нефтяного газа и может быть использовано в нефтегазовой промышленности. При подготовке попутный нефтяной газ, очищенный от капельной влаги и механических примесей, смешивают с газом регенерации, сжимают, охлаждают и отбензинивают путем абсорбции стабильной нефтью, полученную нестабильную нефть выводят, а газ в присутствии воды и водного конденсата подвергают мягкому каталитическому паровому риформингу.

Изобретение относится к устройствам для охлаждения и сепарации сжатых многокомпонентных газов, в частности попутного нефтяного газа, и может быть использовано в нефтегазовой промышленности.

Группа изобретений относится к устройствам и способам подготовки природного газа к транспортировке путем низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности.

Изобретение относится к химической промышленности. Смесь концентрированного раствора серной кислоты и первого раствора серной кислоты прокачивают циркуляционным насосом (3) через систему трубопровода (4) к нагревателям (2). Перед поступлением в нагреватели (2) в систему трубопровода (4) вводят смесь пероксида водорода и второго раствора серной кислоты с концентрацией 90%. Полученную смесь концентрируют в выпарном аппарате (1) с получением концентрированного раствора серной кислоты. Выпаренную воду удаляют из выпарного аппарата (1) и системы трубопровода (4). Изобретение позволяет создать рабочие условия, которые не приводят к разрушению эмали. 6 з.п. ф-лы, 4 ил.

Изобретение откосится к оборудованию для проведения адсорбционных процессов в системе газ (пар) - адсорбент. Технический результат - повышение степени очистки газового потока от целевого компонента и пыли за счет увеличения площади контакта адсорбента с целевым компонентом. Это достигается тем, что в вертикальном адсорбере, содержащем цилиндрический корпус с крышкой и днищем, в крышке смонтированы загрузочный люк, штуцер для подачи исходной смеси с распределительной сеткой, штуцер для отвода паров при десорбции и штуцер для предохранительного клапана, причем в месте стыка крышки и корпуса предусмотрено кольцо жесткости, а в средней части корпуса на опорном кольце установлены балки с опорами, поддерживающие колосниковую решетку, на которой уложен слой гравия, причем слой адсорбента расположен между слоем гравия и сеткой, на которой расположены грузы для предотвращения уноса адсорбента при десорбции, а выгрузка отработанного адсорбента осуществляется через разгрузочный люк, установленный в корпусе, а в днище смонтированы барботер и смотровой люк со штуцером для отвода конденсата и подачи воды, барботер выполнен тороидальной формы и закреплен на конической поверхности днища посредством распорок, причем коэффициент перфорации тороидальной поверхности барботера лежит в оптимальном интервале величин: K=0,5…0,9, а штуцер для отвода очищенного газа расположен на конической поверхности днища, при этом процесс адсорбции и десорбции протекает при следующих оптимальных соотношениях составляющих аппарат элементов: отношение высоты H цилиндрической части корпуса к его диаметру D находится в оптимальном соотношении величин H/D=0,73…1,1; отношение высоты H цилиндрической части корпуса к толщине S его стенки находится в оптимальном соотношении величин H/S=220…275; отношение высоты слоя адсорбента H1 к высоте H цилиндрической части корпуса находится в оптимальном соотношении величин Н1/Н=0,22…0,55; отношение высоты слоя адсорбента H1 к высоте Н2 слоя гравия находится в оптимальном соотношении величин Н1/Н2=5,0…12,0, адсорбент выполнен по форме в виде шариков, а также сплошных или полых цилиндров, зерен произвольной поверхности, получающейся в процессе его изготовления, а также в виде коротких отрезков тонкостенных трубок или колец равного размера по высоте и диаметру 8, 12, 25 мм. 7 ил.

Изобретение откосится к оборудованию для проведения адсорбционных процессов в системе газ (пар) - адсорбент. Технический результат - повышение степени очистки газового потока от целевого компонента за счет увеличения площади контакта адсорбента с целевым компонентом. Это достигается тем, что в кольцевом адсорбере, содержащем цилиндрический корпус с крышкой и днищем, выполненными эллиптической формы, причем в крышке смонтированы загрузочный и смотровой люки, причем загрузочный люк соединен с бункером-компенсатором, расположенным в крышке, а штуцер для подачи исходной смеси, сушильного и охлаждающего воздуха расположен в нижней части корпуса, в которой закреплены опоры для базы под внешний и внутренний перфорированные цилиндры, причем выгрузка отработанного адсорбента осуществляется через разгрузочный люк, установленный в нижней части корпуса, который закреплен в, по меньшей мере, трех установочных лапах, а штуцер для отвода паров и конденсата при десорбции и для подачи воды расположен в днище, в котором закреплен штуцер для отвода очищенного газа и отработанного воздуха и для подачи водяного пара, причем он закреплен через коллектор, имеющий два канала, причем в одном из которых расположена заслонка для процесса десорбции, с барботером, барботер выполнен тороидальной формы по всей высоте перфорированных цилиндров, а штуцер для предохранительного клапана установлен в верхней части корпуса, а процесс адсорбции и десорбции протекает при следующих оптимальных соотношениях составляющих аппарат элементов: коэффициент перфорации тороидальной поверхности барботера лежит в оптимальном интервале величин: K=0,5…0,9; отношение высоты H цилиндрической части корпуса к его диаметру D находится в оптимальном соотношении величин: H/D=2,0…2,5; отношение высоты H цилиндрической части корпуса к толщине S его стенки находится в оптимальном соотношении величин: H/S=580…875, при этом адсорбент выполнен по форме в виде шариков, а также сплошных или полых цилиндров, зерен произвольной поверхности, получающейся в процессе его изготовления, а также в виде коротких отрезков тонкостенных трубок или колец равного размера по высоте и диаметру: 8, 12, 25 мм. 3 з.п. ф-лы, 10 ил.

Изобретение относится к устройству очистки промышленных газов. Устройство включает последовательно установленные электрофильтр, фильтрующий аппарат и аппарат химической очистки газов, далее в параллель включены камеры низкотемпературного катализа и установка искусственного гидравлического сопротивления, при этом в камере низкотемпературного катализа создается область с высокочастотным, импульсным или пульсирующим электрическим разрядом, в которую поступает первоначально очищенный газ, который затем идет в область с катализатором. Изобретение обеспечивает высокую степень очистки промышленных газов от твердых частиц и химических компонентов. 2 з.п. ф-лы, 1 ил.

Описан способ термического дожигания отходящих газов, образующихся при получении акролеина в газофазном процессе, и термического дожигания отходящих газов, образующихся при получении синильной кислоты в газофазном процессе, отличающийся тем, что отходящие газы из процесса получения акролеина и отходящие газы из процесса получения синильной кислоты подают на совместное термическое дожигание. 6 з.п. ф-лы, 5 табл., 3 ил.

Изобретение относится к газонефтяной промышленности, в частности к сбору и обработке природного углеводородного газа по технологии абсорбционной осушки, и может применяться в процессах промысловой подготовки к транспорту продукции газовых месторождений. Способ подготовки углеводородного газа к транспорту включает сепарацию газа дальних кустов скважин, введение регенерированного абсорбента в газовый поток после сепарации, выведение насыщенного влагой абсорбента из газового потока, транспортировку газа для дальнейшей подготовки совместно с газом ближних кустов скважин, сепарацию газа ближних кустов скважин, введение регенерированного абсорбента в газовый поток после сепарации, выведение насыщенного влагой абсорбента из газового потока, введение в газовый поток предварительно отсепарированного газа с дальних кустов скважин, сепарацию смесевого газа, компримирование и охлаждение в две ступени смесевого газа, введение в газовый поток регенерированного абсорбента, выведение из газового потока насыщенного абсорбента на регенерацию, охлаждение смесевого газа и вывод его из установки, при этом температуру точки росы транспортируемого газа обеспечивают ниже температуры транспортируемого газа на 7-12°C. Изобретение обеспечивает однофазную транспортировку газа и сокращение расхода метанола. 1 ил., 1 табл.

Настоящее изобретение относится к области газохимии и касается очистки газовых потоков от кислых примесей, в частности углекислого газа. Изобретение касается способа очистки газового потока, содержащего углекислый газ. Способ согласно изобретению включает приведение газового потока, содержащего углекислый газ, в контакт с потоком абсорбента, содержащего, по меньшей мере, одну соль, по меньшей мере, одного щелочного металла или гидроксид, по меньшей мере, одного щелочного металла и, по меньшей мере, один полиамин, а также, по меньшей мере, один алканоламин, причем полиамин, содержащийся в абсорбенте, имеет температуру кипения не менее чем на 100°C ниже, чем температура кипения используемого алканоламина. Заявленный также способ также включает регенерацию используемого абсорбента и периодическую подпитку абсорбента указанным полиамином. Технический результат заключается в стабильном снижении содержания СО2 в очищаемом газовом потоке, а также в сохранении качественных характеристик абсорбента в процессе его длительной промышленной эксплуатации. 21 з.п. ф-лы, 22 табл., 1 ил.
Наверх