Патенты автора Мальков Виктор Сергеевич (RU)

Изобретение относится к химической промышленности, а именно к способу получения метилпропионата, применяющегося, например, в лакокрасочной промышленности в качестве растворителя или в химической промышленности в качестве сырья для получения пропанола путем гидрогенолиза. Способ получения метилпропионата осуществляется в среде метилового спирта с использованием этилена и окиси углерода. В реакционную смесь дополнительно добавляют пиридин и октакарбонил дикобальта в качестве катализатора. Подача в реактор окиси углерода и этилена осуществляется таким образом, что парциальное давление этилена составляет 1,6-2,5 МПа, окиси углерода – 7,5-8,4 Мпа. После подачи сырья происходит нагрев до достижения температуры в реакторе 140 °С и выдерживание реакционной смеси до 15 минут. По истечении этого времени происходит охлаждение, сброс избыточного давления и выделение метилпропионата. Техническим результатом изобретения является повышение эффективности способа получения метипропионата. 1 з.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к синтетической неорганической химии, а именно к способу получения аддукта фосфорной и борной кислот. Процесс ведут в лопастном смесителе смешением борной кислоты с фосфатом аммония при мольном соотношении 1:1-3 при температуре получения аддукта от 150 до 350°С в течение 30-180 минут. Предложенный способ позволяет получить аддукт фосфорной и борной кислот с температурой разложения выше 300°С (с потерей массы при 300°С не более 5%) и остаточной массой после прокаливания при 500°С более 80% с использованием одного аппарата, без выделения промежуточных продуктов реакции, а также больших водо- и энергозатрат. 1 ил., 1 пр.
Изобретение может быть использовано для производства материалов с пониженной горючестью. Способ получения огнезащитной добавки на основе гликолурила включает смешение гликолурила и трифенилфосфита с алифатическим или ароматическим альдегидом. Реакцию ведут в присутствии катализатора кислоты Льюиса при температуре 70-100 °С в течение 120-360 минут. Мольное соотношение компонентов гликолурил/альдегид/трифенилфосфит составляет 1:5:5. Технический результат заключается в создании способа получения огнезащитной добавки на основе гликолурила без использования дополнительной стадии получения тетрахлоргликолурила, а также в уменьшении времени реакции. 3 пр.

Изобретение относится к синтетической органической химии, а именно к способу получения бората меламина. Способ получения бората меламина осуществляется в лопастном смесителе путем смешения борной кислоты и меламина, при этом меламин смешивают с борной кислотой при температуре от 20 до 100°С в течение 20-30 минут, далее добавляют борат аммония и смесь нагревают до температуры 200-300°С и выдерживают в течение 30-90 минут при мольном соотношении компонентов меламин/борная кислота/тетраборат аммония 1:0,25-1,6:0,25-1 с последующим охлаждением и измельчением. Предложенный способ позволяет получить борат меламина с выходом не менее 75%, с температурой начала разложения выше 300°C и остаточной массой после прокаливания при 500°С не менее 40%, с использованием одного аппарата, без выделения промежуточных продуктов реакции, а также больших водо- и энергозатрат. 1 ил., 1 пр.

Изобретение относится к синтетической органической химии, а именно к способу получения полифосфата меламина. Способ осуществляется в двухлопастном смесителе для перемешивания вязких сред и включает загрузку фосфорной кислоты, которую нагревают от 180 до 230°С, создавая разрежение от 0,93 до 0,7 бар насосом, перемешивают в течение 30-60 минут, с последующим порционным добавлением в полученный расплав меламина при температуре 280°С при перемешивании в течение 30-60 минут и при температуре 300°С с выдержкой смеси в течение 60 минут. С последней порцией меламина добавляют оксалат аммония для поддержания pH среды продукта более 5. Мольное соотношение меламина к фосфорной кислоте и оксалату аммония составляет 1:0,5-2:0,08-0,24. Изобретение позволяет получить полифосфат меламина с высокой термической стабильностью, остаточной массой после разложения не менее 80 %, рН 10 %-ной суспензии более 5, с использованием одного аппарата, без выделения промежуточных и конечных продуктов реакции и в отсутствие растворителя, а также больших водо- и энергозатрат. 1 ил., 1 пр.

Изобретение относится к синтетической органической химии, а именно к способу получения цианурата меламина в водной среде из циануровой кислоты и меламина. Процесс ведут в лопастном смесителе, с отводом отходящих газов в металлическую емкость, смешивая циануровую кислоту и аммиачный буферный раствор, состоящий из раствора аммиака с добавкой хлорида аммония, при рН 9,5-10,9, температуре от 50 до 80°С в течение 10-30 минут, с последующим добавлением меламина и повышением температуры до 100-130°С. Далее температуру повышают до 150-170ºС и выдерживают до полного удаления буферного раствора, затем добавляют оксалат аммония и выдерживают смесь при температуре 200-250°С в течение 30-90 минут. Мольное соотношение компонентов меламин/циануровая кислота/буферный раствор/оксалат аммония составляет 1:1-1,5:2,2-5:0,5-2. Изобретение позволяет получить цианурат меламина с использованием одного технологического аппарата, с использованием минимального количества воды и отсутствием сточных вод. 1 ил., 1 пр.
Настоящее изобретение относится к способу получения катализатора процесса на основе соединений кобальта и продуктов оксосинтеза на основе этилена, включающему взаимодействие этилена с окисью углерода и водорода в реакторе-автоклаве с использованием регенерируемой каталитической системы на основе соединений кобальта при повышенных давлении и температуре. При этом в реактор последовательно загружают растворитель, соединение кобальта, азотсодержащее органическое основание, как пиридин или пиколины, с последующей продувкой азотом и подачей окиси углерода и водорода до достижения общего давления 10-14 МПа, нагреванием полученной смеси в реакторе со скоростью 10°C в минуту до температуры 140-170°С, выдержкой в течение 60 минут при давлении 12 МПа, охлаждением, сбросом избыточного давления до атмосферного, повторной продувкой азотом и насыщением реактора смесью окиси углерода и этилена до 8 МПа, добавлением водорода до достижения общего давления 9-10 МПа, нагреванием смеси до 90-170°С и выдержкой при данной температуре в течение 2-15 минут с последующим выделением продуктов оксосинтеза. Предлагаемый способ позволяет переработать этилен и/или этиленсодержащие газы, образующиеся при каталитическом крекинге, пиролизе, дегидратации спиртов и других процессах, при более мягких условиях процесса - сниженных давлении и температуре. 5 з.п. ф-лы, 3 пр.

Изобретение относится к области медицины, в частности к способу получения медицинских материалов на основе полимерных соединений и может быть использовано в качестве средства профилактики образования послеоперационных спаек во внутриполостной хирургии и гинекологии. Способ получения противоспаечного материала включает взаимодействие полимера со структурирующим агентом, гомогенизацию и сушку. В качестве полимера используют натриевую соль карбоксиметилцеллюлозы. В качестве структурирующего агента используют либо аллантоин, либо гликолурил в количестве от 0,5 до 5% от массы полимера. Сушку осуществляют при температуре от 15 до 25°C в течение 24 часов. Технический результат - создание способа получения противоспаечного материала на основе натриевой соли карбоксиметилцеллюлозы с использованием структурирующего агента, обладающего биологической активностью, при одновременном снижении количества структурирующего агента и отсутствии стадии термообработки после сушки противоспаечного материала. 11 пр., 2 табл.
Изобретение относится к химической промышленности, а именно к технологии получения октакарбонила дикобальта Co2(CO)8, применяющегося, в частности, для получения высокочистого металлического кобальта, нанесения кобальтсодержащих покрытий, катализатора процессов оксосинтеза. В реактор последовательно загружают водный ацетат кобальта (II), гексан и воду с последующей продувкой азотом и подачей окиси углерода и водорода, нагреванием реакционной смеси в реакторе со скоростью 10°C в минуту, выдержкой в течение 60 минут при давлении 25-30 МПа и температуре 170°С, последующим разделением водной и органической фазы и выделением октакарбонила дикобальта из органической фазы путём низкотемпературной кристаллизации. За счёт низкотемпературной кристаллизации повышается выход целевого продукта (97,6% от теоретически возможного) и его чистота. 1 з.п. ф-лы, 1 пр.
Изобретение относится к способу получения пропилпропионата в среде пропилового спирта с использованием этилена и окиси углерода на октакарбониле дикобальта с использованием азотсодержащего органического основания при повышенных давлении и температуре, где осуществляют подачу в реактор окиси углерода, этилена и водорода таким образом, что парциальное давление этилена составляет 1,0-1,6 МПа, водорода - 0,1-1,0 МПа, окиси углерода - 5,0-7,0 МПа, с последующим нагреванием реактора до температуры 140 °С и выдерживанием реакционной смеси в течение 3-15 минут, охлаждением, сбросом избыточного давления и выделением пропилпропионата. Задача настоящего изобретения состоит в разработке способа получения пропилпропионата, с целью достижения максимальной селективности по пропилпропионату - 90-99%, а также максимальной конверсии этилена 97-99%. 5 з.п. ф-лы, 5 пр.

Изобретение относится к области металлорганических координационных соединений с сорбционной активностью и может быть использовано для создания адсорберов на CO2, паров органических соединений (бензол) или разделения газовых смесей CO2/N2, CO2/CH4. Способ получения микропористого терефталата циркония(IV) включает следующие стадии. Диметилформамид (ДМФА) и муравьиную кислоту смешивают в соотношении 1:(2÷3), добавляют 0,5÷1% терефталевой кислоты и 1÷2% соли циркония, смесь термостатируют при 80÷150°C в течение 10÷50 часов при медленном перемешивании. Полученный осадок промывают последовательно горячим ДМФА, горячей водой и ацетоном, затем сушат при 200-250°С. Способ позволяет получать микропористый терефталат циркония(IV) с высоким выходом (до 80-90%), высокой удельной площадью поверхности (более 1500 м2/г) и объемом пор выше 0,6 мл/г. 1 з.п. ф-лы, 3 ил., 6 пр.

Изобретение относится к области металлоорганических координационных полимеров, обладающих сорбционной емкостью, в частности к получению микропористого 2-метилимидазолата цинка, и может быть использовано для создания адсорберов на CO2, паров органических соединений (бензол) или разделения газовых смесей CO2/N2, CO2/CH4. Способ получения микропористого 2-метилимидазолата цинка включает следующие стадии: растворение в водной среде 1-1,5% щелочи и 4-6% 2-метилимидозола, добавление 2-4% водного раствора соли цинка и перемешивание в течение 0,5-5 ч при 15-30°C. Затем выделяют осадок, очищают его последовательными обработками водой и ацетоном с отделением твердого вещества на каждой стадии и высушиванием на воздухе при 100-150°C. Очищенный материал подвергают активации в динамическом вакууме ниже 10-3 бар в течение 1-6 ч при температуре 150-200°C. Изобретение позволяет получить микропористый 2-метилимидазолат цинка с высоким выходом (до 80-90%), высокой удельной площадью поверхности (более 1000 м2/г) и объемом пор выше 0,4 мл/г. Способ пригоден для производства материала в промышленном масштабе. 4 з.п. ф-лы, 4 ил., 5 пр.

Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной ёмкостью, в частности к способу получения микропористого тримезиата меди(II), включающему этапы, на которых в этиловом спирте растворяют тримезиновую кислоту и добавляют водный раствор соли меди(II) с получением смеси, в которой следующее соотношение компонентов, масс.%: 50–80% спирта, 5–10% тримезиновой кислоты, 10–20% соли меди, вода — остальное, причем смесь нагревают при 20–100°C в течение 0,5–5 часов с периодическим добавлением по каплям 0,5–2%-ого раствора щелочного агента или добавлением щелочного агента в количестве от 0,5 до 2 мольных частей на каждую мольную часть соли меди, выделяют осадок, который охлаждают до 20-30°C, очищают последовательной обработкой этанолом и дистиллированной водой или водным раствором этанола с концентрацией 10–30% и высушивают на воздухе при 70-80°C до появления у порошка фиолетового цвета. Технический результат патентуемого решения заключается в увеличении сорбционной ёмкости по отношению к газам и парáм за счет увеличения площади поверхности и объёма пор готового продукта. 3 з.п. ф-лы, 4 ил., 4 пр.

Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной емкостью, в частности к способу получения микропористого терефталата хрома(III), который может быть использован для создания адсорберов на CO2, паров органических соединений (бензол) или разделения газовых смесей CO2/N2, CO2/CH4. Способ позволяет в результате синтеза получать мезопористый терефталат хрома(III) с высоким выходом продукта (до 80-90%), высокой удельной площадью поверхности (более 1000 м2/г) и объемом пор (выше 0,4 мл/г), с использованием минимального количества реагентов и растворителей и может быть масштабирован для промышленного производства. Способ получения мезопористого терефталата хрома(III) включает этапы, на которых смешивают терефталевую кислоту и соль хрома(VI) в водной среде с добавлением серной кислоты при следующем количественном составе реакционной смеси, мас.%: 5-15% соли хрома, 7-17% терефталевой кислоты, 2-8% серной кислоты, 0,5-2% этилового спирта, остальное - вода, полученную смесь термостатируют при 200-220°С в течение 4-8 часов, выделяют осадок и проводят его очистку последовательной обработкой ДМФА, нагретым до 50-70°C, отделяют осадок и обрабатывают его спиртом, нагретым до 60-78°C, отделяют осадок и высушивают его на воздухе при 60-100°C, затем проводят активацию вещества при 150-220°C в вакууме в течение 3-6 ч. 3 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к способу получения микропористого терефталата алюминия, включающему этапы, на которых смешивают 9-11 мас.% терефталевой кислоты и 4-6 мас.% щелочи с использованием растворителя - остальное, нагревают до 80–150 °С и мешают раствор до полного растворения терефталевой кислоты, затем добавляют 25-35 мас.% раствора соли алюминия и продолжают перемешивание при 80–150 °С в течение 0,5-5 часов, после чего отделяют от смеси порошок, который промывают от неорганических примесей с отделением твердого вещества и высушивают в сушильном шкафу при 140-160 °C, затем полученный продукт подвергают активации в печи при 220-300 °C. 5 з.п. ф-лы, 3 ил., 4 пр.

Предложен способ получения микропористого 2-метилимидазолата кобальта(II), включающий этапы, на которых смешивают 1,1-1,5% щелочи, 2,7-3,1% соли кобальта(II) и 4-6% 2-метилимидазола в воде (остальное), при температуре 15-30°C в течение 0,1–3 часа, выделяют осадок посредством фильтрования или центрифугирования и промывают водой с отделением твердого вещества, далее проводят сушку потоком горячего воздуха при 100-150°С в течение 1-8 часов, затем активируют в динамическом вакууме не менее 10–3 бар при 150-200°C в течение не менее 3 часов. Технический результат – повышение сорбционной ёмкости по отношению к газам и парам. 4 з.п. ф-лы, 4 ил., 5 пр.
Изобретение относится к способу получения бисформиата бетулина, включающий, кипячение коры берёзы с последующей фильтрацией, концентрированием маточного раствора, разбавлением маточного раствора с последующей фильтрацией и сушкой полученного целевого продукта, а далее с повторной обработкой коры ацетоном и выделением дополнительной порции целевого продукта, отличающийся тем, что одновременно в качестве растворителя и экстрагента используют муравьиную кислоту, общей продолжительностью процесса 20 часов при температуре 105°C. Технический результат: разработан способ получения бисформиата бетулина с высоким выходом целевого продукта, при технологическом упрощении процесса. 1 пр.

Изобретение относится к способу выделения пространственных изомеров N,N’-диметилгликолурила, а именно 2,6-диметилгликолурила и 2,8-диметилгликолурила, включающему препаративное разделение реакционной смеси, полученной путем взаимодействия двух частей N-метилмочевины и одной части глиоксаля, методом жидкостной хроматографии, характеризующемуся тем, что в качестве стационарной фазы октадецилсилильного силикагеля и элюентов используют водно-ацетонитриловую смесь следующего состава, мас.%: ацетонитрил 2–8, вода 92-8. Технический результат заключается в получении высокочистых реагентов, которые используются для тонкого органического синтеза. 2 пр., 1 ил.
Изобретение относится к области органической химии, а именно к способу очистки 2-метилимидазола, заключающемуся в перекристаллизации в три стадии путем приготовления пересыщенного раствора, его охлаждения до 3°С, фильтрации первой порции выпавших кристаллов, частичного упаривания воды, охлаждения до 3°С, фильтрации второй порции выпавших кристаллов и удаления воды с фильтрацией третьей порции выпавших кристаллов. Технический результат: повышение чистоты конечного продукта, технологическое упрощение процесса. 1 пр.
Изобретение относится к способу получения фенотиазина, заключающемуся в сплавлении дифениламина с элементарной серой в присутствии каталитических количеств йода с последующим охлаждением и перекристаллизацией, отличающемуся тем, что кипячение полученного осадка проводят в толуоле в течение 50-60 минут, затем охлаждают до 70 °C, добавляют этиловый спирт, кипятят полученную смесь в течение 50-60 минут и охлаждают. Технический результат: разработан новый способ получения фенотиазина, отличие которого заключается в новом способе перекристаллизации фенотиазина-сырца, позволяющем получить продукт с более высоким выходом и чистотой. 1 пр.

Изобретение относится к органической химии, а именно к способу получения ингибитора кислотной коррозии – 4,5-дигидроксиимидазолидин-2-тиона путём конденсации глиоксаля и тиомочевины, заключающийся в том, что процесс проводят при 45 °C в течение двух часов, в качестве растворителя используют смесь вода-этилацетат, а реагенты берут в следующих мольных соотношениях: Глиоксаль 1,0:Тиомочевина 1,0:Этилацетат 0,2. Также изобретение относится к способу применения полученного ингибитора путем его добавления в растворы неорганических кислот в количестве 0,5 мас.% от массы раствора. Технический результат: разработан новый способ получения 4,5-дигидроксиимидазолидин-2-тиона, отличающийся простотой и высоким выходом целевого продукта. 1 з.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к области органической химии, а именно к способу получения 4(5)-нитроимидазола, заключающемуся в нитровании имидазола натрием азотнокислым в присутствии серной кислоты при нагревании, с последующим охлаждением, нейтрализацией реакционной смеси, выделением целевого продукта, отличающемуся тем, что реагенты берутся в соотношении имидазол/H2SO4/NaNO3 0,15:0,82:0,3, соответственно, нейтрализацию реакционной смеси проводят 25%-ным водным раствором аммиака до достижения pH раствора 10, выделенный продукт очищают методом перекристаллизации из воды. Технический результат: разработан новый способ получения 4(5)-нитроимидазола, значимого соединения в производстве лекарственных средств, отличающийся высоким выходом целевого соединения, аппаратурным и технологическим упрощением процесса, уменьшением тепло- и энергозатрат. 3 з.п.ф-лы.

Изобретение относится к области строительства дорожных оснований и оснований инженерных коммуникаций и может быть использовано для укрепления песчаных грунтов. Органоминеральная добавка для укрепления песчаных грунтов, включающая измельченный сапонит-содержащий материал, выделенный из пульпы хвостохранилища промышленного обогащения руд месторождения алмазов, отличающаяся тем, что она содержит указанный сапонит-содержащий материал, измельченный до размера частиц 307±83 нм, и дополнительно связующее - 5%-ный раствор глиоксаля, при следующем соотношении компонентов, мас.% песчаного грунта: указанный глиоксаль - 0,52; указанный сапонит-содержащий материал 17. Технический результат - повышение прочностных характеристик песчаного грунта. 2 табл., 2 ил.
Изобретение относится к области органической химии, а именно к способу получения гликолурила, включающему процесс конденсации глиоксаля и мочевины при температуре 80°C в течение 30 минут с добавлением глиоксаля при достижении реакционной массой температуры 60°C, отличающемуся тем, что в качестве катализатора используют п-толуолсульфокислоту, при следующем соотношении компонентов в мольных соотношениях: глиоксаль 1,0, карбамид 2,5, п-толуолсульфокислота 0,18, вода 11,0, а водный раствор глиоксаля прикапывают при температуре 60°C. Технический результат: разработан новый способ получения гликолурила, отличающийся простотой и высоким выходом целевого продукта. 1 пр.
Изобретение относится к аналитической химии, а именно к способам определения карбоновых кислот в водных растворах глиоксаля. В процессе синтеза глиоксаля образуются примеси гликолевой и глиоксалевой кислот, которые мешают дальнейшему его использованию, так как наряду с последним вступают в реакции конденсации, сильно загрязняя продукты на основе глиоксаля. С целью анализа разделения кислот проводят на колонке Zorbax Sb-Aq размерами 150×3 мм, размер зерна 5 мкм. При этом адсорбировавшиеся на колонке кислоты элюируют смесью: 99% вода, 1% ацетонитрил+Н3PO4, pH=2, со скоростью 0,5 мл/мин. Причем в качестве детектора используют спектрофотометрический детектор с длиной волны 210 нм с последующим определением площадей хроматографических пиков глиоксалевой и гликолевой кислот в водном растворе глиоксаля. Техническим результатом является разработка способа хроматографического определения гликолевой и глиоксалевой кислот с целью определения их массовой доли в растворе глиоксаля. 1 пр.
Изобретение относится к аналитической химии, а именно к анализу методом тонкослойной хроматографии 4,5-дигидроксимидазолин-2-тиона, применяющегося для защиты металлов от кислотной коррозии в нефтедобывающей и нефтехимической промышленности, машиностроительной, химической и других отраслях промышленности для защиты стального оборудования, эксплуатирующегося в кислых средах. Для этого отобранный образец анализируемой смеси наносят на линию старта хроматографической пластинки и сушат на воздухе в течение 10 минут. Затем пластинку помещают в приготовленную спиртово-щелочную смесь, до момента перемещения восходящего фронта элюента по пластинке на расстояние 15 мм от линии старта. Далее, после высушивания на воздухе, пластинку проявляют в йодной камере до появления окрашенных пятен. Элюент содержит бутанол и водный раствор аммиака в соотношении 90:10 об.%. Изобретение позволяет добиться 4,5-полного разделения дигидроксимидазолин-2-тиона и тиомочевины, а также идентифицировать эти вещества. 1 пр.
Изобретение относится к области сельского хозяйства, в частности к садоводству. Способ включает размножение черенков годичного прироста длиной 15-20 см с 3-4 почками и двумя-тремя целыми листьями с последующей обработкой черенков перед посадкой. При этом черенки после оводнения в течение 1 часа перед посадкой опудривают порошком гликолурила и сразу высаживают в почвенный субстрат, состоящий из смеси торфа и песка в соотношении 1:1. Способ позволяет увеличить укореняемость черенков, улучшить развитие корневой системы, а также упростить технологию черенкования. 1 табл., 2 пр.
Изобретение относится к области сельского хозяйства, в частности к растениеводству, и может быть использовано для предпосевной обработки семян зерновых культур (пшеницы, ячменя, овса). Способ предпосевной подготовки семян зерновых культур включает обработку семян гликолурилом путем их смачивания в протравителях семян с последующим подсушиванием до сыпучего состояния. Обработку семян осуществляют свежеприготовленным 0,5%-ным раствором гликолурила, предварительно растворенным в воде при температура 90-95°С и охлажденным до комнатной температуры 20-25°С перед использованием. Предлагаемый способ предпосевной обработки семян обеспечивает повышение всхожести семян и усиление роста растений на ранних этапах развития. 3 табл., 3 пр.

Изобретение относится к химической промышленности, в частности к способу получения натриевой соли глиоксалевой кислоты, которая широко применяется в органическом синтезе, например является исходным продуктом для получения ванилина. Способ получения натриевой соли глиоксалевой кислоты из продуктов окисления глиоксаля включает обработку продуктов реакции при контроле pH среды соединениями кальция: оксидом, гидроксидом или карбонатом до рН 5-6 для образования смеси малорастворимых осадков кальциевых солей глиоксалевой и щавелевой кислот, которые фильтруют, сушат, после чего определяют состав смеси и взмучивают ее в воде из расчета 1 г смеси солей на 10-30 мл воды с добавлением ортофосфата, оксалата или карбоната натрия в виде раствора или твердых солей с последующей фильтрацией, упариванием раствора и кристаллизацией натриевой соли, при этом ортофосфат, оксалат или карбонат натрия берут в количестве 0,9-1,0 моль на каждый моль глиоксалата кальция, содержащегося в смеси. Способ позволяет применять доступные реагенты с целью получения продукта с высокими выходом и чистотой. 2 ил., 1 табл., 3 пр.

Изобретение относится к усовершенствованному способу получения гликолевой кислоты. Гликолевая кислота находит широкое применение в различных отраслях промышленности: пищевой, кожевенной, нефтегазовой, обрабатывающей, текстильной, строительной и т.д. Данная кислота обладает рядом важных свойств, обусловливающих ее широкое практическое применение в медицине: она используется в качестве мономера для получения биоразлагаемых гомополимеров и сополимеров с заданными свойствами, используемых, главным образом, в медицине в качестве саморассасывающихся имплантантов. Полимеры на основе гликолевой кислоты могут применяться в качестве барьерных материалов, препятствующих проникновению кислорода. Кроме того, гликолевая кислота используется в косметологической практике для нормализации процессов обмена и кожной микроциркуляции. Способ включает получение водного раствора гликолята натрия из глиоксаля и едкого натра взаимодействием глиоксаля и натриевой щелочи с мольным отношением 1:1,05-1,1 при температуре от 0 до 10°С при непрерывном добавлении глиоксаля, очистку полученного раствора от продуктов осмоления сорбцией на активированном угле, затем переработку раствора в гликолевую кислоту методом электродиализа с использованием биполярных мембран и концентрирование раствора гликолевой кислоты. Эффективный способ позволяет получить гликолевую кислоту с высоким выходом. 3 пр.
Изобретение относится к способу получения карбамидоформальдегидной смолы, используемой для изготовления древесностружечных плит. Способ проводят в несколько стадий в среде с переменной кислотностью. Способ заключается в том, что проводят слабощелочную конденсацию карбамида и карбамидоформальдегидного концентрата в водном растворе в температурном диапазоне 20-95°C и при pH 7,2-9,2. При этом мольное соотношение формальдегида и карбамида составляет (1,8-2,2):1. Далее выдерживают конденсационный раствор в течение 10-20 мин при температуре 85-99°C. Затем подкисляют конденсационный раствор до pH 4,7-5,5. Подкисление проводят водным раствором глиоксаля с концентрацией основного вещества не более 50 мас.% в количестве 1-20% в пересчете на формальдегид. Далее поликонденсацию реакционной массы проводят в кислой среде, нейтрализуют до pH 7,5-8,5 и одновременно охлаждают до 70-75°C. Доконденсацию реакционной массы проводят с дополнительным вводом карбамида до конечного мольного соотношения формальдегида к карбамиду (1,0-1,25):1. Готовую смолу охлаждают и фасуют. Изобретение позволяет снизить содержание свободного формальдегида в готовой карбамидоформальдегидной смоле и древесностружечной плите на ее основе. 2 пр.
Изобретение относится к области органической химии, а именно к способу получения метронидазола путем алкилирования 2-метил-4(5)-нитроимидазола этиленхлоргидрином при нагревании в присутствии соляной кислоты, избыток алкилирующего агента удаляют при пониженном давлении, а непрореагировавший 2-метил-4(5)-нитроимидазол отфильтровывают, после чего полученный раствор нейтрализуют, охлаждают и отфильтровывают и выделенный продукт очищают. Технический результат: разработан новый способ получения метронидазола, отличающийся высоким выходом целевого продукта. 3 з.п. ф-лы, 1 пр.
Изобретение относится к способу получения 1,2-диметил-5-нитроимидазола, который заключается в реакции синтеза 2-метил-4(5)-нитроимидазола с диметилсульфатом в присутствии муравьиной кислоты при нагревании и под давлением, в дальнейшем удалении из реакционной смеси муравьиной кислоты и выделении целевого продукта, отличающийся тем, что реагенты берут в соотношении 2-метил-4(5)-нитроимидазол/диметилсульфат/муравьиная кислота 1,0:1,03:4,97, при этом используют 2-метил-4(5)-нитроимидазол, предварительно очищенный от примесей. Технический результат: разработан новый способ получения 1,2-диметил-5-нитроимидазола, отличающийся высоким выходом и качеством целевого продукта. 5 з.п. ф-лы, 1 пр.
Изобретение относится к способу получения 2-метил-4(5)-нитроимидазола, включающему нитрование 2-метилимидазола азотнокислым натрием в присутствии серной кислоты при нагревании, охлаждение с последующей нейтрализацией реакционной смеси и выделением целевого продукта, отличающемуся тем, что нитрование реакционной смеси ведут при соотношении 2-метилимидазола/H2SO4/NaNO3 1:4,5:2,2 соответственно, а нейтрализацию реакционной смеси проводят 25%-ным водным раствором аммиака до рН = 8-9, после выделения целевого продукта проводят перекристаллизацию последнего из воды с последующей выдержкой. Технический результат: разработан новый способ получения 2-метил-4(5)-нитроимидазола, отличающийся более высоким выходом целевого продукта и простым аппаратурным оформлением процесса нитрования. 4 з.п. ф-лы.
Изобретение относится к способу получения поливинилацетатной дисперсии и может быть использовано в химической промышленности. Способ получения поливинилацетатной дисперсии (ПВАД) включает эмульсионную полимеризацию винилацетата, полимеризацию проводят в присутствии водорастворимого радикального инициатора персульфата калия, эмульгатора - стеарата калия и кристаллического глиоксаля при соотношении компонентов, мас.%: винилацетат 14,16; персульфат калия 0,11; глиоксаль кристаллический 0,71; стеарат калия 0,07; вода 84,95. Технический результат - увеличение стабильности ПВАД в процессе хранения, хорошая прочность клеевых соединений при равномерном отрыве, сокращение количества операций и уменьшение продолжительности технологического цикла при получении ПВАД. 1 з.п. ф-лы, 1 табл., 5 пр.
Изобретение относится к области гетерогенного катализа, а именно к катализатору для очистки отходящих производственных газов от летучих органических соединений, и может быть использовано в химической промышленности, например, для полного окисления отходящих газов производства глиоксаля от примесей формальдегида, этиленгликоля, угарного газа

Изобретение относится к клеям на основе водной дисперсии винилацетатного полимера и может быть использовано в строительной, мебельной, текстильной, полиграфической промышленности, а также в других отраслях промышленности

Изобретение относится к способу получения 1,4-диоксан-2,3-диола, который является реагентом для получения гетероциклических азотсодержащих соединений (в частности, пиразинов), а также используется в фотографии
Изобретение относится к способу получения 2-метилимидазола, который является реактивом для получения фармацевтических препаратов, сельскохозяйственных химикатов, вспомогательных смазочных материалов, порошковых красок, катализаторов органических реакций, ускорителем отверждения эпоксидных смол
Изобретение относится к способу получения 2-метил-4(5)-нитроимидазола, заключающийся в том, что нитрование осуществляют нитрующей смесью, содержащей H2SO4 и HNO3, при этом мольное соотношение компонентов 2-метилимидазол:H2 SO4:HNO3 составляет 1:4,28:3,83, причем серную кислоту с концентрацией 95% небольшими порциями добавляют к 2-метилимидазолу, избегая разогревания смеси выше 70°С, далее, к сернокислому раствору 2-метилимидазола при перемешивании в течение 1,5-2 часов добавляют азотную кислоту с концентрацией 71% при 70°С, избегая разогревания смеси выше 100°С, после этого продолжают реакцию при температуре 95-100°С в течение 5 часов, охлажденную реакционную массу нейтрализуют 25%-ным водным раствором аммиака до рН 7-8 и выделяют целевой продукт путем кристаллизации из воды при соотношении 2-метил-4(5)нитроимидазол:вода 1:10 с последующей выдержкой при температуре 2-5°С в течение 12 час
Изобретение относится к химическим средствам удаления ржавчины, накипи и минеральных отложений с металлических поверхностей и может быть использовано для очистки поверхностей теплообменных аппаратов, нагревательных элементов, трубопроводов, котлов, бойлеров, отопительных систем, а также различных деталей и механизмов

Изобретение относится к аналитической химии, а именно к способам определения содержания свободных альдегидов в альдегидсодержащих смолах и полимерах

Изобретение относится к области аналитической химии, а именно к способу определения массовой доли основного вещества в кристаллическом глиоксале

Изобретение относится к способу получения 2,4,6,8-тетраазабицикло[3.3.0]октан-3,7-диона (гликолурила), реакцию ведут при 80°С, в течение 60 мин, причем используют концентрированную серную кислоту в водной среде и реагенты берут в следующих мольных соотношениях: глиоксаль 2,0; мочевина 4,0; серная кислота 0,4; вода 12, а водный раствор свежеприготовленного глиоксаля прикапывают при перемешивании в течение 20 минут, после чего смесь перемешивают еще 40 минут
Изобретение относится к области синтеза сложных эфиров из спиртовой фракции капролактама

Изобретение относится к химической промышленности и может быть использовано для снижения содержания в материалах, получаемых на основе формальдегидосодержащих смол, несвязанного формальдегида
Изобретение относится к химической технологии неорганических веществ и материалов, в частности к способу извлечения цинка из техногенных концентратов с высоким содержанием сульфидов

 


Наверх