Способ укрепления бельма роговицы в эксперименте


 


Владельцы патента RU 2613417:

Федеральное государственное автономное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации (RU)

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано в экспериментальной медицине в целях укрепления тканей бельма на различных этапах кератопротезирования. У экспериментальных животных производят разрез роговицы концентрично лимбу. Формируют роговичный интрастромальный карман, в который вводят имплантат в виде диска, диаметром 9-12 мм и толщиной 0,2-0,5 мм, состоящий из 4-5 мг коллагена I типа и 100-300 мкг фактора роста rhBMP-2. Способ позволяет повысить биомеханические свойства роговицы в эксперименте, создать благоприятную почву для дальнейшего кератопротезирования, что приводит к уменьшению операционных и послеоперационных осложнений при лечении ожоговых бельм роговицы. 2 пр.

 

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано в экспериментальной медицине в целях укрепления тканей бельма на различных этапах кератопротезирования.

Известен способ укрепления бельма роговицы аутохрящем ушной раковины [Краснов М.М. и др. Офтальмологический журнал. 1978, №7, с. 392-394].

Известен способ укрепления бельма роговицы аутонадкостницей большеберцовой кости [Волков В.В., Ушаков Н.А. в кн. «Вопросы восстановительной офтальмологии». Л., 1972, с. 37].

Недостатками этих способов являются необходимость в предварительном заборе аутологичных тканей и возникающие сложности при моделировании имплантата, а также слабые адаптационные возможности материала и его лизис в послеоперационном периоде.

Наиболее близким аналогом является способ подготовки ожогового бельма роговицы к кератопротезированию с использованием эквивалента хрящевой ткани [Перспективы использования тканеинженерной конструкции на основе культивированных аутологичных хондроцитов на этапах подготовки бельма к кератопротезированию. / Р.А. Гундорова, Е.В. Киселева, П.В. Макаров, Ю.А. Капитонов, Т.А. Канукова. // Российский офтальмологический журнал. - 2014. - Т. 7. - №3. - С. 65-70].

Недостатком данного способа является необходимость в заборе аутологичных клеток и их последующее культивирование, что требует проведения дополнительной операции и не дает возможности приступить к лечению в кратчайшие сроки. Также не решена проблема лизиса используемого имплантата и его большая толщина, усложняющая проведение операции.

Задачей изобретения является повышение биомеханических свойств роговицы в эксперименте и стабилизация полученного функционального эффекта в течение длительного времени.

Техническим результатом, достигаемым при использовании изобретения, является создание благоприятной почвы для дальнейшего кератопротезирования, что приводит к уменьшению операционных и послеоперационных осложнений при лечении ожоговых бельм роговицы.

Технический результат достигается тем, что в способе укрепления бельма роговицы в эксперименте, включающем использование имплантата, изготовленного из коллагена, согласно изобретению, у экспериментальных животных производят разрез роговицы концентрично лимбу, затем формируют роговичный интрастромальный карман, в который вводят имплантат в виде диска, диаметром 9-12 мм и толщиной 0,2-0,5 мм, состоящий из 4-5 мг коллагена I типа и 100-300 мкг фактора роста rhBMP-2. Биодеградация коллагена активирует находящийся в нем фактор роста, под воздействием которого происходит перестройка окружающих тканей. BMP (bone morphogenetic protein) - это плейотропные ростовые факторы, принадлежащие к суперсемейству β-трансформирующего фактора роста (TGF-β).

BMP регулируют три ключевые фазы остеогенеза: хемотаксис, митоз, дифференцировку. Также BMP регулируют гематопоэз, стимулируют синтез внеклеточного матрикса, влияют на поддержание жизнеспособности клеток. Укрепление бельма с помощью фактора роста rhBMP-2 позволяет надолго повысить биомеханические характеристики роговицы, восполнить дефицит ткани в случае истонченных бельм, повысить устойчивость тканей к ишемизации.

Таким образом, предложенный способ укрепления бельма по сравнению с существующими аналогами позволяет отказаться от использования трансплантатов из аутологичных тканей и успешно препятствовать развитию осложнений, таких как протрузия кератопротеза, за счет увеличения прочностных свойств исходных тканей самого бельма, образования новой соединительной ткани и улучшения обменных процессов, протекающих в бельме.

Способ прост в исполнении, не требует дорогостоящей аппаратуры и препаратов, может быть использован в экспериментальной медицине при разработке оперативных методов лечения ожоговых бельм.

Способ осуществляется следующим образом

В 4-5 мг/мл водного раствора коллагена I типа (производство фирмы «ИМТЕК», Москва) добавляли от 100 мкг до 300 мкг фактора роста rhBMP-2. Затем полученный гидрогель разливали в лунки 24-луночного планшета по 1,0 мл. Для формирования геля полученную смесь инкубировали при +37°C в течение 30 минут. Образованные коллагеновые гидрогели, извлеченные из планшета, отмывали в 500 мл фосфатного буферного раствора Рингера-Кребса при комнатной температуре в течение 24 часов, с заменой раствора каждые 8 часов. Далее гели выкладывали на поверхность и сушили их до полного высыхания потоком воздуха при +37°C. Полученные пленки регидратировали, высушивали, получая, таким образом, имплантат в виде, например, диска диаметром 9-12 мм и толщиной 0,2-0,5 мм.

Испытание проводилось на кроликах породы шиншилла весом 2,0-2,5 кг. Под общей и капельной анестезией производился разрез роговицы протяженностью 5 мм на 3/5 ее глубины концентрично лимбу. В данной плоскости формировали роговичный интраламеллярный карман, в который вводили заявленный имплантат. На разрез накладывались швы. У животных оперировали один глаз для сохранения ориентации в окружающем пространстве.

Предложенным способом было проведено укрепление бельма роговицы на 18 кроликах-самцах породы «шиншилла» с исходной массой тела 2,0-2,5 кг. Моделирование ожогового бельма проводилось за 6 месяцев до операции, на левом глазу животных путем аппликации на роговицу кролика хлопчатобумажного диска диаметром 10 мм, пропитанного 10% NaOH в течение 7 секунд, правый глаз был контрольным.

Клиническую оценку состояния глаз животных проводили по степени воспалительной реакции, васкуляризации роговицы (Ченцова Е.В., 1996), интенсивности помутнения роговицы (Войно-Ясенецкий В.В., 1953). Наблюдаемые изменения регистрировались путем фотографирования на фотощелевой лампе фирмы «Opton» (Германия).

Результаты эксперимента оценивали на предмет морфологии и биомеханики.

Пример 1

Кролику-самцу породы шиншилла, массой 3,5 кг, оперировали правый глаз. Выполняли ретробульбарную блокаду 0,5% новокаином. Производился разрез роговицы протяженностью 5 мм на 2/3 ее глубины концентрично лимбу. В данной плоскости при помощи расслаивателя формировали роговичный интрастромальный карман «от лимба до лимба». При помощи пинцета для завязывания и шпателя вводили имплантат, в виде диска диаметром 9 мм и толщиной 0,5 мм, состоящий из 4 мг коллагена I типа и 100 мкг фактора роста rhBMP-2 в полость сформированного кармана. На разрез накладывались швы. По окончании операции производили подконъюнктивальную инъекцию гентамицина сульфата 1,0% в объеме 0,5 мл. Далее в течение одной недели инстиллировали окомистин по 1 капле 2 раза в день.

Клиническую оценку состояния глаз животных проводили по степени воспалительной реакции, васкуляризации роговицы (Ченцова Е.В., 1996), интенсивности помутнения роговицы (Войно-Ясенецкий В.В., 1953). Наблюдаемые изменения регистрировались путем фотографирования на фотощелевой лампе фирмы «Opton» (Германия).

Результаты экспериментов оценивали морфологически. Роговую оболочку вырезали по окружности лимба, а затем фиксировали ее в формалине в течение суток. Полученный диск роговицы разрезали пополам, перпендикулярно по отношению к сосудам. Оба фрагмента обезвоживали в спиртах восходящей концентрации и заливали в парафин. Срезы толщиной 8-10 мкм изготавливали на микротоме и окрашивали гематоксилином и эозином. Исследование срезов роговицы проводили под световым микроскопом при 16- и 40-кратном увеличении.

Для исследования биомеханических характеристик роговую оболочку вырезали по окружности, захватывая при этом участок склеры, отступая 3 мм от лимба. Для чистоты эксперимента использовали свежевыкроенные ткани животных, полученные непосредственно перед проведением исследования. Полученный диск роговицы зажимали между двух металлических пластин с отверстием в центре, соответствующем диаметру роговицы, таким образом, чтобы фиксация происходила за ткань склеры, а роговица была интактной. Готовую конструкцию опускали в физиологический раствор, чтобы препятствовать высыханию тканей во время исследования. Оценку биомеханических свойств проводили при помощи исследования тканей на прокол на разрывных машинах фирмы «Instron».

В раннем послеоперационном периоде отмечено наличие незначительного отека роговицы. Отек был слабо выражен и обусловлен, по всей видимости, наличием операционной травмы. Клинических признаков острого инфекционного поражения окружающих тканей при осмотре не обнаружено. На 9-й день отмечалось появление новообразованных сосудов эксцентрично лимбу, с последующим нарастанием их числа и увеличением калибра сосудов. На 34-й день отмечалась стойкая стабилизация клинической картины. Через 2 месяца клинически значимых изменений не отмечалось. К концу периода наблюдения (90 дней) у кролика наблюдалась васкуляризация и утолщение тканей роговицы до 0,6 мм. Гистологическое исследование области трансплантата показало его частичное разволокнение и замещение новообразованной соединительной тканью, местами в него врастают сосуды. Роговица значительно утолщена. Исследование биомеханических свойств показало повышение прочностных характеристик тканей в 4,5 раза.

Пример 2

Кролику-самцу породы шиншилла, массой 3,5 кг, оперировали правый глаз. Выполняли ретробульбарную блокаду 0,5% новокаином. Производился разрез роговицы протяженностью 5 мм на 2/3 ее глубины концентрично лимбу. В данной плоскости при помощи расслаивателя формировали роговичный интрастромальный карман «от лимба до лимба». При помощи пинцета для завязывания и шпателя вводили имплантат, в виде диска диаметром 12 мм и толщиной 0,2 мм, состоящий из 5 мг коллагена I типа и 300 мкг фактора роста rhBMP-2 в полость сформированного кармана. На разрез накладывались швы. По окончании операции производили подконъюнктивальную инъекцию гентамицина сульфата 1,0% в объеме 0,5 мл. Далее в течение одной недели инстиллировали окомистин по 1 капле 2 раза в день.

Клиническую оценку состояния глаз животных, морфологические исследования и оценку биомеханических характеристик проводили согласно примеру 1.

В раннем послеоперационном периоде отмечено наличие незначительного отека роговицы. Отек был слабо выражен и обусловлен, по всей видимости, наличием операционной травмы. Клинических признаков острого инфекционного поражения окружающих тканей при осмотре не обнаружено. На 7-й день отмечалось появление новообразованных сосудов эксцентрично лимбу, с последующим нарастанием их числа и увеличением калибра сосудов. К концу первого месяца отмечалась стойкая стабилизация клинической картины. Через 2 месяца клинически значимых изменений не отмечалось. К концу периода наблюдения (90 дней) у кролика наблюдалась васкуляризация и утолщение тканей роговицы до 0,7 мм. Гистологическое исследование области трансплантата показало его частичное разволокнение и замещение новообразованной соединительной тканью, местами в него врастают сосуды. Роговица значительно утолщена. Исследование биомеханических свойств показало повышение прочностных характеристик тканей в 4,5 раза.

Способ укрепления бельма роговицы в эксперименте, включающий использование имплантата, изготовленного из коллагена, отличающийся тем, что у экспериментальных животных производят разрез роговицы концентрично лимбу, затем формируют роговичный интрастромальный карман, в который вводят имплантат в виде диска, диаметром 9-12 мм и толщиной 0,2-0,5 мм, состоящий из 4-5 мг коллагена I типа и 100-300 мкг фактора роста rhBMP-2.



 

Похожие патенты:

Группа изобретений относится к области медицины. Способ изготовления глазного протеза заключается в формировании имитирующего склеру видимой части глаза непрозрачного основания и имитирующего роговицу прозрачного покрытия, получении и нанесении на основание изображения здорового глаза и закреплении покрытия на основании с помощью светоотверждаемого клея.

Изобретение относится к офтальмологии и представляет лечебную силикон-гидрогелевую мягкую контактную линзу (МКЛ). Линза содержит несквозные депо, заполненные лекарственным веществом.

Устройство офтальмологической линзы содержит вставку с изменяемыми оптическими свойствами, содержащую передний и задний криволинейные элементы. Задняя поверхность переднего криволинейного элемента и передняя поверхность заднего криволинейного элемента имеют различные радиусы кривизны.

Группа изобретений относится к медицине. Устройство офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, расположенной в части оптической зоны устройства офтальмологической линзы, которая содержит: криволинейную переднюю и криволинейную заднюю поверхности, причем данные поверхности выполнены с возможностью формирования камеры; источник энергии, встроенный во вставку с изменяемыми оптическими свойствами на участке, содержащем неоптическую зону; и ориентирующий слой, содержащий участки жидкокристаллического материала, расположенный внутри камеры.

Группа изобретений относится к области медицины. Устройство контактной линзы со вставкой с изменяемыми оптическими свойствами расположена в части оптической зоны устройства контактной линзы.

Группа изобретений относится к области медицины. Офтальмологическая контактная линза для по меньшей мере одного из замедления, сдерживания или предупреждения прогрессирования миопии, содержащая: оптическую зону, выполненную с возможностью положительной асимметричной аберрации, для создания физиологического эффекта на глаз, причем положительная асимметричная аберрация включает в себя асимметричные радиальные профили оптической силы с увеличением оптической силы от центра к краю оптической зоны, причем асимметричные радиальные профили оптической силы могут изменяться вдоль различных радиальных меридианов, и при этом дифференциал оптической силы между центром и краем оптической зоны составляет от 0,5 дптр до 25 дптр, и периферийную зону, окружающую оптическую зону.

Офтальмологическое устройство содержит линзу, имеющую оптическую и периферическую зоны, выпуклую переднюю и вогнутую заднюю изогнутые поверхности, и текстурный узор, сформированный на одной или обеих из поверхностей на глубине и с интервалами, обеспечивающими повышение смачиваемости поверхности, тем самым улучшая комфорт и не нарушая нормальный обзор через устройство.

Изобретение относится к области офтальмохирургии. Способ определения радиуса кривизны передней поверхности интрастромальной оптической линзы (INLAY) для коррекции пресбиопии, включающий показатели преломления стромы роговицы (Nрогов), материала оптической линзы (Nматер) и радиус кривизны задней поверхности Rзадн.

Изобретение относится к медицине, а именно к области офтальмомикрохирургии. Искусственная радужка выполнена в виде плоского кольца и окрашенной, ее центральное отверстие выполнено в виде усеченного конуса.

Группа изобретений относится к медицине. Офтальмологическая линза содержит: оптическую зону, выполненную с возможностью коррекции зрения, причем оптическая зона образована из первого материала, имеющего первый модуль упругости; периферийную зону, окружающую оптическую зону и образующую верхнюю область, среднюю область и нижнюю область, причем периферийная зона образована из первого материала; и активные зоны увеличенной толщины, расположенные в средней области; и тонкие зоны, расположенные в верхней и нижней областях, и одну или более зон с высоким модулем упругости, встроенных в тонкие зоны в периферийной зоне, причем одна или более зон с высоким модулем упругости образованы из второго материала, имеющего второй модуль упругости, причем второй модуль упругости больше первого модуля упругости.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для обработки донорской роговицы с проведением двухстороннего УФ-кросслинкинга перед кератопротезированием осложненных сосудистых бельм 4-5 категории. Для этого донорскую роговицу помещают на 1 час в среду для консервации. Затем донорскую роговицу перемещают в стерильную ёмкость и обрабатывают ультрафиолетом с одной стороны роговицы с длиной волны 365 нм мощностью 3 мВ/кв. см. При этом каждые 5 минут производят инстилляцию на роговицу 1 капли 0,1%-ного раствора рибофлавина (первая обработка). После обработки с одной стороны донорскую роговицу обрабатывают ультрафиолетом с противоположной стороны так же, как при первой обработке. Среда для консервации содержит рибофлавина мононуклеотид, декстран, глутатион, натрия хлорид и воду дистиллированную очищенную, при следующем соотношении компонентов, мас.%: рибофлавина мононуклеотид - 0,1, декстран - 10,0, глутатион - 0,09, натрия хлорид - 0,9, вода дистиллированная очищенная - остальное. Способ обеспечивает получение донорской роговицы с повышенными биохимическими, биомеханическими и прочностными свойствами, что способствует снижению риска некроза роговицы. 1 з.п. ф-лы, 1 пр.
Наверх