Способ заготовки ультратонких донорских роговичных трансплантатов для задней послойной кератопластики с эндотелиального доступа с помощью фемтосекундного лазера

Изобретение относится к медицине, а более конкретно к офтальмологии, и предназначено для формирования ультратонкого роговичного диска (трансплантата) равномерной толщины для задней послойной кератопластики. Формируют равномерный ультратонкий трансплантат толщиной 130 мкм. Для этого используют низкоэнергетический высокочастотный лазер с длиной волны 1030-1050 нм, продолжительностью импульса 400 фс, работающий на частоте 1 МГц, с энергией в импульсе 0,6 мкДж для вертикального и 0,1 мкДж для горизонтального разрезов. Трансплантат формируют диаметром эндотелиальной поверхности 8,2 мм со скошенными боковыми поверхностями, расположенными под углом 27° к поверхности эндотелия. Способ позволяет добиться безопасного, прогнозируемого и эффективного способа формирования ультратонких донорских роговичных трансплантатов равномерной толщины для повышения качества заготавливаемого роговичного диска и улучшения клинико-функциональных результатов задней послойной кератопластики. 1 ил., 2 пр.

 

Изобретение относится к медицине, а более конкретно к офтальмологии, и предназначено для формирования ультратонкого роговичного диска (трансплантата) равномерной толщины для задней послойной кератопластики.

Автоматизированная задняя послойная кератопластика, также известная как DSAEK (Descemet's Stripping Automated Endotelial Keratoplasty), является «Золотым стандартом» лечения эндотелиальной дистрофии Фукса и вторичной буллезной кератопатии. Функциональный результат операции во многом зависит от толщины и равномерности трансплантата. При формировании трансплантата с передней поверхности роговицы при помощи механического микрокератома или фемтосекундного лазера, ввиду анатомических особенностей строения роговицы, получается трансплантат неравномерной толщины. Большая толщина периферической части трансплантата по сравнению с центральной приводит к существенному гиперметропическому сдвигу рефракции пациента.

Выходом является формирование трансплантата с задней стороны роговицы, то есть вывернув его эндотелием вверх. Подобная технология позволяет создать ультратонкий, равномерный, предсказуемый по толщине трансплантат. Имеется описание такой методики для фемтосекундного лазера Ziess Visumax 500 кГц (Jesper Hjortdal, Esben Nielsen, Anders Vestergaard, Anders . Inverse Cutting of Posterior Lamellar Corneal Grafts by a Femtosecond Laser // The Open Ophthalmology Journal. 2012 - №6. P. 19-22).

Недостатками метода являются применение относительно высокоэнергетической лазерной установки с изогнутым аппланационным интерфейсом, а также прямой угол между эндотелиальной и боковыми поверхностями трансплантата. Несмотря на полученные ультратонкие (130 мкм) равномерные по толщине срезы задних слоев роговицы, средняя острота зрения пациентов через 12 месяцев после операции составила 0,3, а максимальная не превысила 0,5. Авторы связывают это с наличием «хейза» в области интерфейса «донор-реципиент». Такого рода пролиферативный ответ кератоцитов характерен для их активации избыточным энергетическим воздействием. Прямой угол между эндотелием трансплантата и его боковыми поверхностями приводит к формированию непокрытой эндотелием «ступеньки» между десцеметовой мембраной реципиента и эндотелием трансплантата. Это удлиняет период послеоперационного отека стромы роговицы и зрительной реабилитации, а также может привести к затеканию внутриглазной жидкости под трансплантат и его послеоперационной дезадаптации (половина случаев в приведенной статье), что требует дополнительных хирургических манипуляций и отрицательно сказывается на жизнеспособности трансплантата. Снижение плотности эндотелиальных клеток трансплантата через 12 месяцев после операции при данной методике сопоставимо с методикой выкраивания трансплантата механическим микрокератомом.

Задачей изобретения является разработка безопасного, прогнозируемого и эффективного способа формирования ультратонких донорских роговичных трансплантатов равномерной толщины с помощью фемтосекундного лазера с целью повышения качества заготавливаемого роговичного диска и улучшения клинико-функциональных результатов задней послойной кератопластики.

Техническим результатом изобретения является возможность формирования ультратонкого равномерного по толщине трансплантата в 130 мкм, диаметром 8,2 мм со скошенной боковой поверхностью (угол боковой поверхности трансплантата относительно эндотелиальной 27°). Толщина в 130 мкм является оптимальной для применяемой хирургической техники, так как при данной глубине ламеллярного среза лазерное излучение не оказывает повреждающего действия на эндотелиальные клетки. В результате операции, после дегидратации трансплантата, его итоговая толщина составляет около 80 мкм, что полностью соответствует критериям ультратонкого и обеспечивает максимальное качество зрительных функций реципиента. Толщина трансплантата при данном подходе является легко прогнозируемой и не зависит от исходной толщины донорской роговицы. Острый угол боковой поверхности трансплантата обеспечивает лучшую адаптацию трансплантата к роговице реципиента. По мере дегидратации трансплантата и уменьшения его толщины в послеоперационном периоде происходит плавное подгибание краев трансплантата, в результате чего происходит сопоставление краев десцеметовой мембраны трансплантата с десцеметовой мембраной роговицы реципиента. Это укорачивает период послеоперационного отека роговицы и трансплантата, обеспечивает более быстрое восстановление зрительных функций.

В работе используют фемтолазерную установку российского производства (Фемто-Визум, Оптосистемы, Троицк) с плоским аппланационным интерфейсом, обеспечивающим равномерное уплощение роговицы. Машина работает на частоте 1 МГц и с энергией импульса не более 1 мкДж, что обеспечивает равномерный срез высокого качества и минимальную активацию кератоцитов.

Технический результат достигается тем, что в способе заготовки ультратонких донорских роговичных трансплантатов для задней послойной кератопластики с эндотелиального доступа с помощью фемтосекундного лазера, включающей запрограммированные интрастромальные разрезы, позволяющие получить равномерный ультратонкий трансплантат толщиной 130 мкм, для горизонтального разреза формируют трансплантат со скошенными боковыми поверхностями, расположенными под углом 27° к поверхности эндотелия.

Изобретение поясняется чертежом, где изображена схема заготовки трансплантата на фемтосекундной лазерной установке «Фемто-Визум». Позицией 1 обозначена эндотелиальная поверхность роговицы, 2 - аппланационный интерфейс лазера, 3 - эпителиальная поверхность роговицы, 4 - диаметр начала вертикального реза, 5 - диаметр окончания вертикального реза, 6 - глубина начала вертикального реза, 7 - глубина ламеллярного разреза, α - угол вреза (угол боковой поверхности трансплантата относительно эндотелиальной 27°).

Способ осуществляется следующим образом. В способе формирования донорского роговичного диска, согласно изобретению, фемтосекундным лазером формируют запрограммированные интрастромальные разрезы посредством одноэтапной резекции. При этом донорский консервированный корнеосклеральный диск помещают под лазерную установку инвертно (эндотелием кверху). Первый срез проводят в ламеллярной плоскости в растровом режиме на глубине 130 мкм. Используются следующие параметры работы фемтолазера для горизонтального среза: энергия 0,1 мкДж, расстояние между импульсами лазера - 3 мкм, между уровнями - 3 мкм, диаметр 8,2 мм. После выполнения ламеллярного разреза выполняют второй разрез в вертикальном направлении с глубины 150 мкм кверху (в сторону эндотелия). Диаметр начала реза на глубине 150 мкм 7,6 мм, диаметр окончания реза на уровне эндотелия 8,2 мм. При выбранных диаметрах угол вреза составляет 27°. Используются следующие энергетические характеристики работы фемтолазера для вертикального среза: энергия импульса 0,6 мкДж, частота 1 МГц, расстояние между импульсами лазера - 2 мкм, расстояние между каждым уровнем бокового разреза - 2 мкм. Таким образом, лазер программируют так, чтобы вертикальный и ламеллярный разрезы частично перекрывали друг друга. Это необходимо для достижения высокого качества отделения трансплантата по краям среза.

Способ операции осуществляется следующим образом. Донорский роговичный трансплантат формируют при помощи фемтолазерной установки российского производства (Фемто-Визум, Оптосистемы, Троицк) с плоским аппланационным интерфейсом, использующей излучение инфракрасного лазера с длиной волны 1030-1050 нм, частотой следования импульсов 1 МГц, продолжительностью импульса 400 фс, энергией в импульсе 0,6 мкДж для вертикального и 0,1 мкДж для ламеллярного разреза. Низкая энергия и высокая частота импульса обеспечивают равномерный срез высокого качества и минимальную активацию кератоцитов.

Донорскую роговицу извлекают из среды для консервирования Борзенка-Мороз, выворачивают эндотелием кверху и помещают на искусственную переднюю камеру (ИПК). После закрывания механизма ИПК ее наполняют средой для консервирования роговиц (Борзенка-Мороз) до состояния нормотонии роговицы, что важно для создания правильной и полной аппланации. Эндотелиальная поверхность роговицы увлажняется консервационной средой для минимизации потери эндотелиальных клеток в момент аппланации. Готовую для работы роговицу в ИПК помещают под аппланационную линзу, соединенную с фемтосекундным лазером «Фемто-Визум». После обеспечения центровки и полной аппланации роговицы под контролем компьютерной программы производят срез роговицы заданного профиля. Первый срез проводят в ламеллярной плоскости в растровом режиме на глубине 130 мкм. Используются следующие параметры работы фемтолазера для горизонтального среза: энергия 0,1 мкДж, расстояние между импульсами лазера - 3 мкм, между уровнями - 3 мкм, диаметр 8,2 мм. После выполнения ламеллярного разреза выполняют второй разрез в вертикальном направлении с глубины 150 мкм кверху (в сторону эндотелия). Диаметр начала реза (d) на глубине 150 мкм 7,6 мм, диаметр окончания реза (D) на уровне эндотелия 8,2 мм. При выбранных диаметрах угол вреза составляет 27°. Используются следующие энергетические характеристики работы фемтолазера для вертикального среза: энергия импульса 0,6 мкДж, частота 1 МГц, расстояние между импульсами лазера - 2 мкм, расстояние между каждым уровнем бокового разреза - 2 мкм.

После окончания работы фемтосекундного лазера корнеосклеральное кольцо в ИПК помещают под операционный микроскоп. Тонким шпателем проходят по окружности вертикального разреза и разделяют оставшиеся коллагеновые перемычки. Затем при помощи шпателя разделяют коллагеновые перемычки в горизонтальной плоскости. Таким образом, использование предлагаемой методики формирования роговичного трансплантата позволяет создавать ультратонкие равномерные лоскуты с прогнозируемой толщиной, не зависящей от исходной толщины донорской роговицы. При этом полностью отсутствует риск перфорации и выбраковки материала.

Параметры работы лазера «Фемто-Визум» являются низкоэнергетическими, а использование среды Борзенка-Мороз позволяет работать на безопасном расстоянии от эндотелия (130 мкм), сводя к минимуму его повреждение. После дегидратации толщина донорской роговицы в глазу реципиента снижается до 80 мкм, что обеспечивает минимальные значения индуцированной гиперметропии. Острый угол боковых краев трансплантата относительно его эндотелиальной поверхности способствует адаптации краев десцеметовой мембраны трансплантата с десцеметовой мембраной роговицы донора. Это способствует более быстрой дегидратации стромы роговицы, укорочению периода зрительной реабилитации, а также препятствует затеканию внутриглазной жидкости под трансплантат, вследствие чего отсутствует вероятность дезадаптации трансплантата в послеоперационном периоде. В нашем наблюдении из 14 операций, выполненных согласно описанной методике, не было ни одного случая дезадаптации транспланатата. Низкая энергия фемтолазера минимально влияет на активацию кератоцитов, что позволяет избежать возникновения «хейза» на границе трансплантата и роговицы реципиента.

Выбор параметров лазерного воздействия подтвержден экспериментальными и гистологическими исследованиями на донорских роговицах, результатами конфокальной микроскопии и компьютерным анализом количественного и качественного состояния клеток эндотелия роговицы.

Предлагаемый способ поясняется следующими клиническими примерами.

Пример 1. Пациент Д., 63 года, с диагнозом: дистофия роговицы Фукса правого глаза, осложненная катаракта, миопия средней степени. Острота зрения 0,05 sph -2,0 D = 0,3. Кератометрия ах 161° 42,50 D ах 71° 42,25 D. Пахиметрия по центру 639 мкм. По данным Confoscan 4 эндотелий измененной формы, подсчет клеток не удается. Пациенту под местной анестезией и внутривенным наркозом через парацентез роговицы шириной 1,1 мм выполнен десцеметорексис диаметром 8,0 мм. Из донорской роговицы с ПЭК 2700 кл/мм2 с эндотелиальной стороны выкроен роговичный диск с заданным профилем: диаметр со стороны эндотелия 8,2 мм, толщина 130 мкм, угол боковых поверхностей 27°. Для этого первый срез проводят в горизонтальной плоскости в растровом режиме на глубине 130 мкм. Используются следующие параметры работы фемтолазера для горизонтального среза: энергия 0,1 мкДж, расстояние между импульсами лазера - 3 мкм, между уровнями - 3 мкм, диаметр 8,2 мм. После выполнения ламеллярного разреза выполняют второй разрез в вертикальном направлении с глубины 150 мкм кверху (в сторону эндотелия). Диаметр начала реза (d) на глубине 150 мкм 7,6 мм, диаметр окончания реза (D) на уровне эндотелия 8,2 мм. При выбранных диаметрах угол вреза составляет 27°. Используются следующие энергетические характеристики работы фемтолазера для вертикального среза: энергия импульса 0,6 мкДж, частота 1 МГц, расстояние между импульсами лазера - 2 мкм, расстояние между каждым уровнем бокового разреза - 2 мкм. Трансплантат выделен шпателем, перемещен в воронку глайда по Бузину эндотелием кверху. Затем глайд перевернут, его наконечник введен в переднюю камеру через туннельный роговичный разрез в височной области длиной 1,5 мм и шириной 4,5 мм. При помощи пинцета с зубчатыми кончиками, введенного через парацентез роговицы с носовой стороны, трансплантат введен в переднюю камеру. Под трансплантат введен воздух для лучшей адгезии к ложу реципиента, затем трансплантат центрирован в ложе. На следующий день после операции трансплантат прозрачный, в передней камере 1/3 пузырь воздуха, адгезия полная. Острота зрения 0,1 н/к. Кератометрия ах 136° 42,25 D ах 46° 41,75 D. На пятый день при выписке трансплантат прозрачный, зрение глаза 0,3 н/к, пахиметрия в центре роговицы 634 мкм, на ОСТ профиль просматривается четко, края десцеметовой мембраны трансплантата адаптированы к краю десцемотовой мембраны реципиента, толщина трансплантата в центральной зоне - 116 мкм. ПЭК - 2156. Через 3 месяца зрение 0,6 н/к, трансплантат прозрачный, «хейз» на границе трансплантата с роговицей реципиента отсутствует, кератометрия ах 142° 42,25 D ах 52° 42,00 D. ПЭК - 2100. Через год трансплантат прозрачный, зрение 0,8 н/к. ПЭК- 2007, минимальная толщина трансплантата в центральной зоне - 84 мкм, «хейза» нет.

Пример 2. Пацинет А., 78 лет, с диагнозом: эпителиально-эндотелиальная дистрофия роговицы правого глаза, артифакия. Острота зрения 0,05 sph -1,75 D cyl -1,0 D ах 83° = 0,15. Кератометрия ах 171° 47,25 D ах 81° 44,25 D. Пахиметрия по центру 595 мкм. По данным эндотелиальной микроскопии ПЭК не определяется, по данным Confoscan 4 эндотелий измененной формы, подсчет клеток не удается. Пациенту под местной анестезией и внутривенным наркозом через парацентез роговицы шириной 1,1 мм выполнен десцеметорексис диаметром 8,0 мм. Из донорской роговицы с ПЭК 2650 кл/мм2 с эндотелиальной стороны выкроен роговичный диск с заданным профилем: диаметр со стороны эндотелия 8,2 мм, толщина 130 мкм, угол боковых поверхностей 27°. Для этого первый срез проводят в горизонтальной плоскости в растровом режиме на глубине 130 мкм. Используются следующие параметры работы фемтолазера для горизонтального среза: энергия 0,1 мкДж, расстояние между импульсами лазера - 3 мкм, между уровнями - 3 мкм, диаметр 8,2 мм. После выполнения ламеллярного разреза выполняют второй разрез в вертикальном направлении с глубины 150 мкм кверху (в сторону эндотелия). Диаметр начала реза на глубине 150 мкм 7,6 мм, диаметр окончания реза на уровне эндотелия 8,2 мм. При выбранных диаметрах угол вреза составляет 27°. Используются следующие энергетические характеристики работы фемтолазера для вертикального среза: энергия импульса 0,6 мкДж, частота 1 МГц, расстояние между импульсами лазера - 2 мкм, расстояние между каждым уровнем бокового разреза - 2 мкм. Транспланатат выделен шпателем, перемещен в воронку глайда по Бузину эндотелием кверху. Затем глайд перевернут, его наконечник введен в переднюю камеру через туннельный роговичный разрез в височной области длиной 1,5 мм и шириной 4,5 мм. При помощи пинцета с зубчатыми кончиками, введенного через парацентез роговицы с носовой стороны, трансплантат введен в переднюю камеру. Под трансплантат введен воздух для лучшей адгезии к ложу реципиента, затем трансплантат центрирован в ложе. На следующий день после операции трансплантат прозрачный, адаптация полная, в передней камере 1/2 пузырь воздуха. Острота зрения 0,1 н/к. Кератометрия ах 145° 46,75 D ах 55° 42,25 D. На пятый день при выписке трансплантат прозрачный, зрение 0,4 sph -1,0 D cyl -1,0 D ах 150° = 0,5, пахиметрия в центре роговицы 604 мкм, на ОСТ профиль просматривается четко, толщина трансплантата в центральной зоне - 126 мкм, края десцеметовых мембран трансплантата и роговицы реципиента адаптированы. ПЭК - 2323. Через 6 месяцев зрение 0,4 sph -1,5 D cyl -0,5 D ax 143° = 0,7, кератометрия ax 143° 44,25 D ax 53° 42,75 D трансплантат прозрачный, «хейз» на границе трансплантата с роговицей реципиента отсутствует. ПЭК - 2152. Через год трансплантата прозрачный, зрение 0,5 sph -1,5 D cyl -1,0 D ax 138° = 0,8. ПЭК - 2078, минимальная толщина трансплантата в центральной зоне - 84 мкм, «хейза» нет.

Во всех случаях достигнуты прозрачное приживление трансплантата, точное моделирование роговичных профилей по заданным параметрам, полная адгезия трансплантата в послеоперационный период, отсутствует «хейз» на границе трансплантата с роговицей реципиента, достигнута высокая острота зрения.

Технология фомирования роговичного трансплантата со скошенными боковыми поверхностями со стороны эндотелия на низкоэнергетическом режиме работы фемтосекундного лазера «Фемто-Визум» обеспечивает:

- быструю зрительную реабилитацию (высокая адгезия трансплантата в к роговице реципиента, низкий риск послеоперационной дезадаптации трансплантата, быстрое уменьшение послеоперационного отека роговицы и трансплантата, отсутствие «хейза» на границе трансплантата с роговицей реципиента, отсутствие гиперметропического сдвига рефракции, высокая острота зрения),

- получение качественного, равномерного по толщине ультратонкого роговичного трансплантата,

- безопасность заготовки донорского материала исключает возможность выбраковки трансплантата.

Способ заготовки ультратонких донорских роговичных трансплантатов для задней послойной кератопластики с эндотелиального доступа с помощью фемтосекундного лазера, включающий запрограммированные интрастромальные разрезы, позволяющий получить равномерный ультратонкий трансплантат толщиной 130 мкм, отличающийся тем, что при помощи низкоэнергетического высокочастотного лазера с длиной волны 1030-1050 нм, продолжительностью импульса 400 фс, работающего на частоте 1 МГц, с энергией в импульсе 0,6 мкДж для вертикального и 0,1 мкДж для горизонтального разрезов формируется трансплантат с диаметром эндотелиальной поверхности 8,2 мм со скошенными боковыми поверхностями, расположенными под углом 27° к поверхности эндотелия.



 

Похожие патенты:
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано при хирургическом лечении идиопатических макулярных разрывов сетчатки. Способ включает выполнение витрэктомии с выделением и иссечением задней гиалоидной мембраны.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для удаления эмульгированного силиконового масла (ЭСМ) из витреальной полости при лечении отслойки сетчатки.
Изобретение относится к области медицины, а именно к офтальмологии, и касается техники выполнения реконструктивного хирургического вмешательства в переднем отделе глаза при одновременном помутнении роговицы и хрусталика.
Изобретение относится к медицине, а именно к офтальмологии, и предназначено для лечения косоглазия с гиперфункцией нижней косой мышцы. Выделяют нижнюю косую мышцу, растягивают ее на крючках у места естественного прикрепления.
Изобретение относится к медицине, а именно к офтальмологии, и предназначено для фиксации интраокулярной линзы (иол) при ее люксации в стекловидное тело. После перемещения интраокулярной линзы из полости стекловидного тела в переднюю камеру глаза на радужку и размещения линзы, с каждой стороны линзы на одинаковом расстоянии от зрачкового края симметрично относительно опорного элемента линзы, выполняют лазерные иридотомии.

Группа изобретений относится к офтальмологическому микрохирургическому инструменту, в частности, включает зонд для витрэктомии (варианты) и способ ограничения размера канала режущего инструмента зонда для витрэктомии.

Изобретение относится к офтальмологии и предназначено для проведения антиглаукомной операции - дренирующей аутоклапанной лимбосклерэктомии. Набор состоит из одноразовых инструментов с металлической рабочей частью – конъюнктивального пинцета, скребца эписклерального, двузубого дозированного ножа, склеральных расслаивателей - правого и левого, окончатого шпателя, пинцета радужно-роговичного, общехирургического ножа и пластикового разметчика.

Изобретение относится к области медицины, а именно к офтальмологии, и может применяться при хирургическом лечении закрытоугольной глаукомы с органической блокадой угла передней камеры.

Группа изобретений относится к медицине, а именно к офтальмологии, и предназначена для эмульсификации хрусталика в глазу с использованием модульной портативной системы, содержащей блок факоэмульсификации, съемно присоединенный к насосному блоку, и удаления частей хрусталика из глаза с использованием давления отсасывания, обеспечиваемого насосным блоком.

Группа изобретений относится к медицинской технике, а именно к хирургическим инструментам, в частности к пинцету для капсулорексиса для использования в глазной хирургии.

Изобретение относится к медицинской технике офтальмохирургии. Устройство для факофрагментации с элементом послойного разрушения хрусталика содержит несущую цилиндрическую трубку и элемент послойного разрушения хрусталика, выполненный в виде сложенного вдвое, с петлеобразным перегибом отрезка никелид-титановой нитеобразной проволоки, расположенного в полости цилиндрической трубки, с возможностью его перемещения и выступания за пределы торца цилиндрической трубки. Применение устройства позволяет минимизировать травматизм хирургического лечения осложненных катаракт. 3 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к офтальмологии и может быть использовано для пластики роговицы в отдаленные сроки после радиальной кератотомии. С помощью фемтосекундной лазерной установки производят формирование трех круговых концентричных интрастромальных роговичных тоннелей на глубине: периферический 30%, средний 50%, внутренний 70% от толщины роговицы. Ширина каждого тоннеля составляет 300 мкм, а внутренние диаметры 8 мм, 6,5 мм и 5 мм соответственно. После этого фемтолазером в каждом тоннеле выполняют по два диаметрально противоположных разреза длиной 300 мкм в радиальном направлении в проекции кератотомических радиальных насечек, начиная на глубине тоннеля и заканчивая на наружной поверхности роговицы. Открывают разрезы и тоннели. Протягивают по полипропиленовой нити в каждый тоннель, сначала по половине тоннеля от одного разреза до другого, затем по оставшейся половине до формирования круга. При этом протягивание нити в каждом следующем тоннеле начинают с разреза, диаметрально противоположного разрезу предыдущего тоннеля. Затягивать узел начинают со среднего тоннеля под контролем кератоскопа. Погружают узел в разрез. Аналогичным образом затягивают оставшиеся узлы, сначала в периферическом тоннеле, затем во внутреннем. Способ позволяет уменьшить прогрессирующие уплощения роговицы, гиперметропическую рефракцию за счет максимально точного и симметричного расположения швов на заданных диаметре и глубине и их равномерного натяжения. 1 ил., 1 пр.
Изобретение относится к медицине, в частности офтальмохирургии, и может быть использовано при лечении свежей регматогенной отслойки сетчатки, то есть отслойки сетчатки с разрывом. Формируют тоннель в субтенноновом пространстве в зоне проекции разрыва сетчатки, заводят баллон в тоннель и раздувают баллон с помощью физраствора до создания вала вдавления склеры. На первые сутки выполняют отграничительную лазеркоагуляцию только видимого края разрыва, расположенного на вале вдавления, а через 7 суток после первой лазеркоагуляции вновь усаживают пациента за лазерную установку. Ассистент начинает постепенно сдувать баллон, дозированно нажимая на клапан, при этом одномоментно хирург отслеживает ситуацию на глазном дне с помощью трехзеркальной линзы Гольдмана через оптическую систему лазерной установки. Как только хирургу открывается центральный край разрыва, он просит ассистента прекратить сдувать баллон и приступает к выполнению отграничительной лазеркоагуляции открывшегося края разрыва сетчатки, после этого баллон вновь раздувают до первоначального объема, а через 5 дней баллон плавно сдувают и удаляют. Способ позволяет обеспечить прилегание сетчатки, надежное блокирование разрыва и повышение остроты зрения. 1 пр.

Изобретение относится к медицине, в частности к офтальмологии, и предназначено для хирургического лечения острых бактериальных послеоперационных эндофтальмитов с использованием антибиотиков (АБ). Удаляют патологически измененное стекловидное тело путем трехпортовой витрэктомии с забором содержимого витреальной полости и передней камеры на посев микрофлоры и определение ее чувствительности к антибиотикам. После выполнения трехпортовой витрэктомии через микродоступы 25-27G визуально определяют места отслойки и разрыва сетчатки и производят адаптацию отслоенной сетчатки путем замещения раствора BSS на перфторорганическое соединение (ПФОС), при этом одномоментно дренируют субретинальную жидкость из-под отслоенной сетчатки и выполняют отграничительную лазеркоагуляцию области разрыва сетчатки. Далее проводят замену ПФОС на газовоздушную смесь. Выполняют интравитреальное введение ванкомицина в область сосудистых аркад единичными каплями в дозе 200 мкг/0,1 мл, затем в витреальную полость вводят силиконовое масло, замещая газ, до нормотонуса глазного яблока, после этого порты удаляют и доступы ушивают, затем накладывают герметизирующий шов на основной роговичный разрез и выполняют внутрикамерное введение цефтазидима в дозе 450 мкг/0,1 мл. Способ позволяет достичь быстрого восстановления зрительных функций, снизить интра- и послеоперационные осложнения. 3 з.п. ф-лы, 2 пр.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для хирургического лечения косоглазия. Осуществляют конъюнктивальный разрез. Выделяют прямую мышцу. Прошивают верхнюю треть мышцы одной нитью, а нижнюю треть - другой нитью в 4-7 мм от места прикрепления мышцы. В области прикрепления прямой мышцы к склере производят два надреза длиной 1-1,5 мм от периферии к центру. Далее той же иглой и нитью накладывают склеральный шов в месте его прикрепления, где был произведен надрез, подтягивают за нить прошитый участок мышцы кпереди к месту прикрепления мышцы, формируя мышечную складку в виде валика. Способ обеспечивает получение высоких функциональных, косметических результатов при хирургическом лечении косоглазия, а также снижение интра- и послеоперационных осложнений за счет прошивания верхней трети прямой мышцы одной нитью, а нижней трети другой нитью в 4-7 мм от места прикрепления мышцы и образования мышечной складки для усиления действия мышц. 2 пр.
Изобретение относится к офтальмологии и может быть использовано для необходимого увеличения эффективной площади опоры гаптического элемента интраокулярной линзы (ИОЛ) в случаях хирургии катаракты при обширных дефектах связочного аппарата хрусталика. Через роговичный разрез шириной 2,2 мм вводят внутрикапсульное кольцо, при помощи картриджа и инжектора с мягким плунжером за радужку вводят гибкую двухплоскостную зрачковую ИОЛ модели РСП-3, после этого передний гаптический элемент выводят в переднюю камеру к передней поверхности радужки, а задний гаптический элемент заправляют в капсульный мешок. Использование изобретения позволит снизить послеоперационные осложнения, такие как отслойка и разрывы сетчатки, кистозный макулярный отек, грыжа стекловидного тела, дислокация ИОЛ, прогрессирование возрастной макулярной дегенерации, обеспечить высокую послеоперационную остроту зрения, стабильное положение ИОЛ, нормальные анатомические взаимоотношения внутриглазных структур, а также профилактику офтальмогипертензии в послеоперационном периоде. 2 пр.
Изобретение относится к офтальмологии и предназначено для хирургического лечения окклюзии центральной вены сетчатки, приводящей к замедлению кровотока и формированию тромба. Способ включает разрез конъюнктивы в нижне-внутреннем секторе глазного яблока, выкраивание в 6-8 мм от лимба эписклерального сосудистого лоскута треугольной формы 7×7×5 мм, толщиной 150-200 мкм, основанием к лимбу и вершиной к зрительному нерву, последующий сквозной разрез у основания лоскута на всю его ширину глубоких слоев склеры, введение в супрахориоидальное пространство эписклерального лоскута, поверх которого укладывают сложенный вдвое лоскут биоматериала «Аллоплант для аутолимфосорбции» размером 5×8 мм, который полностью погружают в супрахориоидальное пространство, продвигают к зрительному нерву и укладывают вокруг него в виде полукольца, после чего накладывают П-образный шов на склеральную рану, узловой шов на конъюнктиву. Изобретение позволяет достичь улучшения ретинального кровотока, резорбции отека сетчатки и геморрагий и обеспечивает профилактику повторного формирования тромба. 1 пр.

Предлагаемая группа изобретений относится к области способов и устройств, применяемых в хирургии глаза, и может быть использована в качестве временного кератопротеза для визуализации структуры тканей заднего отрезка глазного дна в условиях отсутствия роговицы глаза. Временный кератопротез состоит из прозрачной в видимом диапазоне линзы с кривизной верхней оптической поверхности, близкой к кривизне роговицы, и оптической силой, близкой к оптической силе роговицы глаза. При этом линза жестко закреплена на поверхности кольца, диаметр которого больше диаметра линзы. Данный кератопротез фиксируется на поверхности глаза путем подшивки, при этом конъюнктиву вокруг кольца временного кератопротеза прошивают кисетным швом, нить которого утягивают так, что на поверхности кольца вокруг линзы образуется складка конъюнктивы. Способ позволяет обеспечить уменьшение вероятности послеоперационных осложнений и герметизацию зазора между временным кератопротезом и поверхностью глаза. 2 н.п. ф-лы, 6 ил., 1 пр.

Изобретение относится к медицине. Линза для витрэктомии состоит из прозрачной в видимом диапазоне линзы с диаметром, меньшим внутреннего диаметра подшивного кольца, и вогнутой нижней оптической поверхностью с радиусом кривизны, близким к радиусу кривизны наружной поверхности роговицы глаза. При этом оптически прозрачная линза жестко закреплена внутри кольца из ферромагнитного материала со способностью примагничиваться к магниту. Применение данного изобретения позволит уменьшить вероятность механического повреждения тканей роговицы при извлечении линзы из подшивного кольца, а также улучшить качество регистрируемого изображения. 3 ил.

Изобретение относится к офтальмологии и может быть использовано при нетрансплантационном хирургическом лечении болящей буллезной кератопатии. Выполняют кросслинкинг с инстилляцией рибофлавина с декстраном. Во время инсталляции рибофлавина с декстраном перед УФ-излучением стерильной иглой проводят тотальную переднюю стромальную пункцию (ПСП) с косым входом иглы в строму роговицы на одну треть ее толщины, при этом проколы выполняют параллельными рядами от лимба до лимба; в каждом раду из одной точки выполняют два прокола в латеральную и медиальную стороны под углом 45 градусов; следующий двусторонний прокол в ряду вплотную прилежит к предыдущему; проколы следующего ряда выполняют аналогичным образом, при этом проколы, идущие в сторону предыдущего ряда, должны своим концом доходить до края его рубцов, а расходящиеся с ними проколы выполняют в направлении еще не обработанной роговичной поверхности, постепенно покрывая носовую, а затем височную половины роговицы. Во время выполнения проколов каждые две-три минуты инсталлируют рибофлавин с декстраном. Способ обеспечивает купирование болевого синдрома и отсутствие рецидивов заболевания в течение длительного времени в результате однократного проведения процедуры, а также способствует образованию более закрытой рубцовой поверхности, что делает рубцовый барьер более замкнутым, с меньшим количеством «свободных окон» по площади роговицы, в сравнении с рубцовым барьером после выполнения тотальной ПСП по классической методике. 7 ил., 2 пр.
Наверх